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Factsheet

The goal of the FIRE collaboration is to understand the formation of
heavy elements in the universe
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Nucleosynthesis
Elements are formed in several different networks of nuclear
reactions taking place in various astrophysical environments
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The R Process
Heavy elements are formed through rapid neutron capture reactions
in very neutron-rich environments

Exact conditions still under debate

Multi-messenger observation of neutron star
merger (GW170817) suggests NN mergers are
definite candidates

Supernovae, black-hole collisions, etc. still not
completely ruled out

Astronomers just proved the incredible origin of nearly all
gold, platinum, and silver in the universe
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Astronomers strike cosmic gold

By Robert Sanders, Media relations = OCTOBER 16, 2017

Scientists witness huge cosmic crash, find origins of
gold
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Ingredients of r-process Simulations

Theoretical simulations require complete and precise nuclear data for
all nuclei in the nuclear chart, as well as astrophysical conditions

av————————————— b

= To calculate: relative abundances of given
elementsY,(t), Y,(t), etc.

= Astrophysical inputs = Simulation of supernova
explosion or NN merger

— Provide density and temperature for Maxwell- ...
Boltzmann statistics

¥(A)

= Nuclear physics inputs for given (Z,N)
~  Q-values for all decays
~ Decay rates: a-, B-, y-decay, fission(s)
- Reaction rates: n-capture, photoreactions J
~ Decay products

= Nuclear reaction network is set of coupled
differential equations giving variations of
abundances as a function of nuclear rates

= Compare with stellar and solar abundances
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Nucleosynthesis Codes

The FIRE collaboration uses PRISM to compute r-process abundances
based on a set of nuclear and astrophysics inputs
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Nuclear Inputs

Complete information about the structure, decay and reactions of all
atomic nuclei is needed

= Ground-state properties = Q-values

Level density

Optical model = |Consistent description of B- and Y-
@ decay

Branching ratios

4414

= | Direct calculation of fission yields

= |Couplings between fission and
reaction theory

= Capture rates? a decay? Branching
ratios? Current models are still .
“simple” and rely on a number

parameters |

Barrier heights

We need this information for 1000’s of nuclei

- : Neutron Number

_—
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Highlights
The FIRE collaboration has integrated state-of-the-art calculations of
fission and B-decay into the most advanced r-process simulations

= List of highlights

Table of initial fission fragment distributions for all Z > 8o
R-process simulations with physics-based fission fragment distributions

Impact of neutron emission from all fission fragments on r-process
simulations

Discovery of the role of B-delayed fission in r-process
Special nuclei: the crucial role of spontaneous fission in 254Cf

= Other notable achievements

Fully-microscopic calculation of B-decay rates: toward a fully self-consistent
theory of nuclear data for r-process

Reverse engineering of nuclear masses: what masses are needed to
reproduce features of the r-process peaks?

(Nuclear) data mining: the role of B-decay spectrum of fission fragments in
shaping the anti-neutrino anomaly of nuclear reactors
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Fission
All fission channels (spontaneous, induced, B-delayed) must be
accounted forin a r-process calculation

Motion in Scission Prompt neutrons  Prompt gammas Beta decay
collective space

/
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fission yields
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Primary Primary fission Secondary fission

Independent Cumulative
fission yields fission yields

i

fission fragments products products
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Fission Theories

Both microscopic and semi-microscopic fission models have predictive
power, but a full-scale, complete description remains beyond reach
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Highlight 1
We computed the first-ever full table of fission fragment distributions
for all Z > 8o nuclei by simulating fission dynamics explicitly
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Highlight 2
We performed the first r-process calculations with fission yields from
a nuclear physics calculation rather than systematics
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Highlight 3
We have added the capability to compute the number of neutrons
and photons emitted by the fission fragments in r-process simulations

Vassh, et al., J. Phys. G: Nucl. Part. Phys. 46, 065202 (2019)
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= Couple Q-value and daughter nucleus information from B-decay with fission yields
= Compute neutron emission with FREYA
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B-decay Theory

B-decay is a key mechanism of several nucleosynthesis processes and
is also involved in fission

that allows synthesizing higher-Z
elements in nucleosynthesis oo Dot

u B'decay IS the prlmary meChanlsm udu E i electron antineutrino
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= Weak process embedded in strongly-
interacting many-body system

= Transitions induced by B-decay After
operators are treated within linear
response theory —QRPA with weak ||
external field
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delayed neutron
N

= We have coupled QRPA with reaction
theory (Hauser-Feshbach) to handle
competition between B-, y-decay and
fission
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Highlight 4
We have quantified the impact of beta-delayed fission using direct
simulation of decay fission channels

M. R. Mumpower, T. Kawano, T. M. Sprouse, N. Vassh, E. M. Holmbeck, R. Surman, and P. Mdller, ApJ 869, 14 (2018)
N.Vassh, et al., J. Phys. G: Nucl. Part. Phys. 46, 065202 (2019)
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= Darker regions: elements where 3-delayed fission occurs the most
= Profound implications for the production of actinides and superheavy elements
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Highlight 5
We have identified what is so far the only "smoking gun” that
actinides could be produced in a neutron star merger

Y. Zhu, et al. ApJL L23, 863 (2018)
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= Extra heating comes from the spontaneous fission of a single nucleus, 254Cf
because of late-time 3-decay feeding

~  Nuclear theorists back to work on spontaneous fission of Cf isotopes...
—  Our calculations have observational consequences that can be tested
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Summary
The FIRE collaboration has delivered a unique, US-based, capability to
tackle the problem of the origin of elements in the universe
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Outlook

This is a “perfect storm” of multi-messenger observations, FRIB, and
theory enabled by HPC and machine learning techniques

FIRE has made great progressin
- Incorporating realistic models of fission in r-process simulations
- Describing B- and y-decay in a single framework
- Connecting network calculations with astronomical observations

- Educating new workforce: two FIRE postdocs hired as staff at national
laboratories

Consistency of theoretical inputs is key to reduce nuclear physics
uncertainties in r-process simulations
Next frontiers:

- Start from nuclear forces and compute nuclear data within a fully
quantum-mechanical theory

- Propagation of uncertainties and the role of machine learning

Collaborative model works!
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