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“AI for Optimized SRF Performance of CEBAF Operations”

The project builds on a recent successful effort at Jefferson Lab to implement AI
at CEBAF and seeks to extend the work for optimizing SRF operations.
Specifically, the proposal presents a multi-faceted approach to:

A. develop tools to automate cavity instability detection

B. provide real-time fault prediction for C100 cavities

C. minimize radiation levels due to field emission in the linacs
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Improving SRF performance in these ways would
translate to increased beam availability and reliability of
CEBAF, increased beam-on-target for nuclear physics
users, and meet DOE’s mission to maximize scientific
output per operating dollar.
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Continuous Electron Beam Accelerator Facility

December 2, 2021 4

• CEBAF is a CW recirculating linac utilizing 418 SRF cavities to 
accelerate electrons up to 12 GeV through 5-passes 

• it is a nuclear physics user-facility capable of servicing 4 
experimental halls simultaneously

• the heart of the machine is the SRF cavities



CEBAF Down Time Manager
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• RF related issues are consistently one of the biggest contributors to downtime
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PROJECT A
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PI: Dennis Turner
Graduate Student: Hal Ferguson (ODU)



Project A: Cavity Instability Detection
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• Goal:

automate the process of identifying unstable SRF cavities

• Description:

SRF cavities can become unstable without presenting faults, identifying these
unstable cavities with present diagnostics is difficult and time-consuming

• Solution:

(1) develop and install a new fast DAQ system for the legacy SRF cavities

(2) apply ML to identify unstable cavities
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Cavity Instability Detection: Current Approach
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• note, this represents an obvious example
• not all instances are so easily detectable by an

operator

RF Analyzer Tool
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Cavity Instability Detection: Slow Data

• collect and label “slow” data from the archiver
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beam trip beam trip



Cavity Instability Detection: Slow Data

• autoencoder architecture
train on “normal” samples, anomalous conditions revealed in poor reconstruction errors
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accuracy =  0.9842
precision =  0.9928

recall =  0.9904
F1-score =  0.9916

at the chosen threshold:
1249.0



Cavity Instability Detection: User Interface
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• displays reconstruction loss per cavity using archived data for one trip

• higher reconstruction loss higher likelihood that the cavity presented an instability

• clicking on a bar for a particular cavity opens a plot of the raw archived data



Cavity Instability Detection: User Interface
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note PMES instability around the time of trip 

• operator interface is nearly ready for deployment

• documentation and installation remain

• an identical interface will be created to display
results of the fast DAQ autoencoder model



Cavity Instability Detection: Data Acquisition System (DAQ)
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• all parts procured, fabrication and testing in progress

• 20 DAQs for NL (reduced scope due to rising costs)



Cavity Instability Detection: Data Acquisition System (DAQ)

• prototype chassis installed and running software collecting data

• working on autoencoder using this fast data
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PROJECT B

15

PI: Chris Tennant
Graduate Student: Md. Monibor Rahman (ODU)



Project B: C100 Fault Prediction
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• Goal:
Proactively predict if a C100 cavity fault will occur

• Description:
Currently deployed ML models analyze data after a fault has occurred. Investigate the use of
machine learning to predict if a fault will occur.
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… …

fault event
streaming data

8,192 samples × 0.2 ms/sample = 1.64 seconds



have the ability to record high-
fidelity data from 11 cryomodules 

in CEBAF

5

5

1

FAULT ISOLATION
Which of the 8 cavities faulted first?

FAULT IDENTIFICATION
What kind of trip was it?

17 signals/cavity × 8 cavities = 136 signals 17 signals1 cryomodule = collection of 8 cavities

C100 Fault Isolation and Identification: Present

train a model to correctly classify the cavity and type of RF fault given waveform data

machine learning multi-class classification time-series data



Fault Classification  Fault Prediction
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• small portion of waveforms around fault event are used for training classifiers
uses static datasets

• modifications to LLRF system will allow us to continuously stream data

• investigate if data prior to fault contains enough information to predict event

C100 cryomodule

LLRF

storage

partial

Model A

prediction

discard

offline training

Model B

Model A: fault prediction (discriminate between “stable” and “impending”)

Model B: fault-type prediction (classify fault)
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Hybrid Deep Learning Model for Fault-type Prediction
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• 1D CNN – LSTM model architecture for both model A and B

Model A: 2 outputs
Model B: 7 outputs



Model A: Binary Classifier
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normal

Normal

Faulty

-5 ms

faulty

100 ms

Normal

Faulty

-1435 ms

quasi-normal

-5 ms

faulty

100 ms



Model B: Fault Classifier
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• can data prior to event accurately predict the fault type?
 use saved waveforms

t = -1400 mst = -1200 ms t = -800 mst = -1000 ms t = -400 mst = -600 ms t = -200 ms
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Model B: Fault Classifier
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0 ms prior to fault
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Model B: Fault Classifier
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20 ms prior to fault
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Model B: Fault Classifier

24

50 ms prior to fault
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Model B: Fault Classifier
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100 ms prior to fault
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Model B: Fault Classifier
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• initial results suggests that for some fault types, prediction is possible

Microphonics Electronic Quench
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PROJECT C

27

PI: Adam Carpenter and Riad Suleiman
Graduate Student: Kawser Ahammed (ODU)



Project C: Field Emission Management
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• Goal: 
maintain low levels of field emitted (FE) radiation without invasive interruptions to physics

• Description:
use ML to model radiation levels and allow for off-line optimization of gradient distribution,
identify cavities where FE onsets have changed

• Solution:
optimize surrogate model to minimize radiation via gradient reduction

damaged beamline valveradiation area damaged magnet and cables



Field Emission Management: Data Requirements
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• Jefferson Lab designed, installed, and commissioned a new neutron and gamma
radiation detection system* focused on FE radiation
operational August 2021

measure neutron dose rates correctly in the presence of photon radiation

detectors are “blind” to low energy photons and electrons

integrated into EPICS with signals for gamma and neutron dose rates

wide dynamic range

currently have 22 detectors installed

*P. Degtiarenko, US Patent 10,281,600



Data Collection: New and Improved
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• pros of new approach
 less correlated inputs

 better sampling of input space
around operational values

 clearly indicates major field 
emitters

• cons of new approach
 slower, so fewer samples

 smaller range of radiation 
values observed

• streamlined process, able to 
be run by operators

New MethodOld Method
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Data Collection: Models
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R-Squared MSE MAE MAPE

Train 0.981 0.062 0.133 0.012

Test 0.652 1.815 0.701 0.062

Gamma

Neutron

Train

Test

Train

Test

• no FE onset required as input

• no feature engineering

• currently training MLP and XGBoost
models

• XGBoost performs better, likely due to
limited data
no extrapolation – likely pushes us to MLP

XGBoost
Observed vs Predicted Plots

XGBoost Results on September 7 Data
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Dimensionality Reduction

• use dimensionality reduction techniques to visualize input data
 reduce 32-dimensional gradient inputs to 2-dimensions

• assess:
 how similar or dissimilar data sets are

 how does (parasitic) “Trip” data compare to data collected invasively (i.e., “July”)
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UMAP t-SNE



Field Emission Management: Proof-of-Concept Demonstration

33

1. set CEBAF to same gradient distribution as September 7 baseline

2. apply model-based optimized gradients to CEBAF

before optimization after optimization
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Field Emission Management: Proof-of-Concept Demonstration

1. set CEBAF to same gradient distribution as September 7 baseline

2. apply model-based optimized gradients to a portion of the NL in CEBAF

before optimization after optimization



Field Emission Management: Proof-of-Concept Demonstration

36

1. set CEBAF to same gradient distribution as September 7 baseline

2. apply model-based optimized gradients to CEBAF

12 rem/hour decrease for 5 MV/m reduction in gradient

before optimization after optimization



Field Emission Management: Optimization

• transition to a genetic algorithm (GA) to optimize
gradient distributions
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SUMMARY
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Data: The Fuel for Machine Learning
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• accelerators produce a lot of data
 CEBAF continuously archives 300,000+ signals

• however, it’s not all useful for ML applications

• ML projects at JLab only possible because of newly available data

C100 cavity fault classification
#
 digital LLRF + waveform harvester

C100 cavity fault prediction  digital LLRF + streaming data

field emission management  NDX detectors* 

cavity instability detection  fast DAQ

• data reliability is critical!
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*P. Degtiarenko, US Patent 10,281,600

#
work supported by JLab LDRD



Data: The Fuel for Machine Learning

40

• focus in Year 2 was developing models using alternate available data

• significant delays have plagued our ability to use fast and/or streaming data
A. cavity instability detection: DAQ system

 supply chain and other pandemic related issues caused delays (2+ years)

B. C100 fault prediction: dual-buffer firmware upgrade
 bench tests ongoing, however experiencing 2-year delay from expected deployment

C. field emission management: NDX detectors
 built, tested, commissioned, installed, and operational

• focus of Year 3 will be to continue making progress in getting systems in place
to collect data required for developing machine learning models

• have – or will have – sources of high quality data to enable continued work

in this area for the foreseeable future (beyond the life of the FOA)



Year 2 Progress
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Project A: Cavity Instability Detection

• DAQs in the process of being fabricated, tested and installed

• good progress on ML model for slow and fast data, user interface developed

Project B: C100 Fault Prediction

• binary classifier shows excellent performance and will be deployed shortly

• fault-type classifier shows good performance as well

Project C: Field Emission Management

• proof-of-principle demonstration showing the utility of the surrogate model

• work to better understand data and how to best maintain model performance over time

• three posters presented at 2022 NAPAC conference
 “Initial Studies of SRF Cavity Fault Prediction at Jefferson Laboratory”
 “Using AI for Management of Field Emission in SRF Linacs”
 “SRF Cavity Instability Detection with Machine Learning at CEBAF”



Project Summary: Major Deliverables and Schedule
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Project Deliverable Date

Cavity Instability Detection

Installation of 20 production DAQs 03/2023

Deployment of user interface 03/2023

Training and testing of ML model using fast data 03/2023

Incorporate transient energy signals from BPM data 07/2023

Deploy ML model in CEBAF 07/2023

C100 Fault Prediction

Deploy binary classifier in CEBAF for testing and evaluation 12/2022

Train and test ML regression model (deploy if performance is acceptable) 01/2023

Deploy fault type classifier to work with binary classifier 02/2023

Implement streaming data capability and use with deployed models 07/2023

Field Emission Management

Use dimensionality reduction to visualize and understand data sets 02/2023

Develop optimization software for use with surrogate model to optimize gradients 02/2023

Develop whole (NL) linac surrogate model 07/2023

CEBAF Scheduled Accelerator Down: March – July, 2023



Project Summary: Annual Budget

• took awhile to find second graduate student

• took even longer to find third graduate student

• have not been able to replace PostDoc
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FY2020
($k)

FY2021
($k)

Total
($k)

a) Funds allocated 450,000 450,000 $900,000

b) Actual costs to date 450,000 214,287 $664,287
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Thank You


