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Luminosity Optimization Needed at the New RHIC Jet Detector
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• Global Parameters:

1. Orbit (Dipole)

2. Tune (Quadrupole), 

3. Chromaticity (Sextuple)

4. Octupole

5. RF cavity 

• Local (IR8) Parameters:

1. Beta*

2. S* (more sensitive than head on)

3. Bunch length

• New jet detector sPHENIX was 

commissioned in 2024.

• Physics study needs higher 

luminosity.

1. VTX (+/-10 cm)

2. Crossing angle (2mrad) 

3. S/N - Background

VTX

ALL

Courtesy of W. Fischer

Luminosity depends on:
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➢ Develop an advanced modeling framework based on first-principle physical 

simulations, lattice models and the state-of-the-art machine learning methods.

➢Apply this framework to the performance improvement of the RHIC 

experiments (sPHENIX). 

➢ Train and educate early career researchers.

Project Goals:
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Year 1:

Q1: Develop data manipulation package that can be used to extract and label data from RHIC measurements,

and to interface with the simulation packages; Build an analytical luminosity model from integration, including

the hourglass effect, crossing angle and IP optics.

Q2: Modify the existing beam-beam simulation code to include the requirements of sPHENIX; Interlink the 

analytical model with RHIC optics model and the GPTune framework.

Q3: Connect the GPTune to the simulation tools; Test the beam in RHIC for luminosity optimization using 

GPTune (without sPHINEX detector knobs).

Q4: Analyze the initial experimental data and benchmark the analytical model; Build models and control knobs 

to maximize the performance of RHIC, especially the sPHENIX experiment; Explore new prior functions and 

kernel functions in the GPTune based on the physics knowledge.

Major Deliverables and Schedule 
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Year 2:

Q1: Extend the GPTune Bayesian optimization framework’s capability to include the 

general experimental control knobs; Add the sPHINEX related control and analytical 

model in the optimization routine using GPTune.

Q2: Apply the enhanced GPTune optimizer to RHIC measurement data to test the model 

and the control knobs using RHIC ‘s accelerator physics experiment (APEX) time; Test 

beam with luminosity optimization including sPHINEX requirements (maximize the 

vertex luminosity while minimize the background).

Q3: Update the optics tuning model with the experimental data, improve the tuning 

strategy; Apply to RHIC measurement data to test the model using RHIC‘s accelerator 

physics experiment (APEX) time.

Q4: Continue to apply optimization to the RHIC measurement control knobs using RHIC

‘s accelerator physics experiment (APEX) time; Test beam with updated optimization

strategy and further improve sPHINEX performance.

Major Deliverables and Schedule 



7

GPTune
Bayesian 
Optimization

MAD-X
Lattice Design

Analytical Model +
BeamBeam3D 
Beam-Beam
Simulation

RHIC

Physics Informed ML/GP
Data Informed ML/GP

• Transfer learning improves the BO performance in RHIC luminosity optimization by using
the GP model trained by the physics simulation. 

Advanced Modeling Framework for RHIC Lum. Optimization
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• Multiple-slice model for finite bunch length

• New algorithm -- shifted Green function --
efficiently models long-range collisions  

• Parallel particle-field based decomposition to 
achieve perfect load balance

• Lorentz boost to handle crossing angle

• Arbitrary closed-orbit separation

• Multiple bunches, multiple collision points

• Linear transfer matrix + one turn chromaticity

• Conducting wire, crab cavity, e-lens, crab 
waist compensation model

• Feedback model

• Wakefield model

Some key features of the BeamBeam3D

https://github.com/beam-beam/BeamBeam3D

BeamBeam3D: A Parallel Self-Consistent Colliding Beam 
Simulation Code
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Bayesian Optimization: A Model Based Black-Box Method
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These are the parameters need to be trained in the GP model

Gaussian Process: A Surrogate Model with Uncertainties



Bayesian Optimization Software Package: GPTune
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Some key features of GPTune include:

(1) relies on dynamic process management for running applications with varying core counts and GPUs

(2) can incorporate coarse performance models to improve the surrogate model

(3) allows multi-objective tuning such as tuning a hybrid of objectives

(4) allows multi-fidelity tuning to better utilize the limited resource budget

(5) supports checkpoints and reuse of historical performance database. 

https://gptune.lbl.gov

• on-line accelerator optimization must be constrained

vertex signal
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Bayesian Optimization with Black Box Constraints Needed for 
Safe On-Line Optimization

• The Objective function f (e.g. luminosity) is approximated with a Gaussian process (GP).

• The constraint functions g and h (e.g. beam losses) are approximated 
with another Gaussian process. 

• During the optimization process, both GPs are updated with the available data points.

• The constraint GP will be used in the BO to guide the prediction of next search point.

Optimization Problem:
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Verification of Bayesian Optimization with Black Box 
Constraints

• feasible domain for x is between 0 and 1. • feasible domain for x is between 0 and 0.5.

f = sin(4p x)
g = 2x-2

f = sin(4p x)
g = 2x-1
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Value of the constraint equation at each optimization step 
for the problem with different c

Value of the objective function at each optimization 
step for the problem with different c

Application of Bayesian Optimization with Black Box 
Constraints to a RHIC Example

Minimize:

where  and  are horizontal and vertical Twiss functions 

Here, the set  denotes the index set for the lattice elements bo6_qd1, bo7_qd1, 

bo10_qd1, bo11_qd1, and bo2_qd1.  

X: the quadrupole strength of two lattice elements 

bo7_qd3 and bo7_qf4

• Smaller objective function is achieved with weaker constraints.
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New Feature in GPTune: Wasserstein-Based Kernels for Inputs 
with Uncertainties

Functions with input uncertainty

Assume a collection of function samples 𝑥𝑖 , 𝑦𝑖 , 𝑖 ≤ 𝑛 with observation errors 

𝜖𝑖~𝑁(0, 𝑢𝑖
2) and input errors 𝛿𝑖~𝑁(0, 𝜎𝑖

2)

For 𝑑-dimensional problems:

𝛿𝑖
𝑑 represents known or unknown uncertainty, in e.g., control knobs of accelerators 

𝑦𝑖 = 𝑓 𝑥𝑖 + 𝛿𝑖 + 𝜖𝑖

𝑦𝑖 = 𝑓 𝑥𝑖,1 + 𝛿𝑖,1, … , 𝑥𝑖,𝑑 + 𝛿𝑖,𝑑 + 𝜖𝑖
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Wasserstein-Based Gaussian Process (WGP) 
Wasserstein distance between two normal distributions 𝑥1~𝑁(𝜇1, 𝜎1

2), x2~𝑁(𝜇2, 𝜎2
2)

Assume 𝑓 follows a GP: 𝑓(𝑥)~𝐺𝑃(0, 𝐾(𝑥, 𝑥′)), with Wasserstein-distance-based kernels:

The log-likelihood function can be optimized w.r.t. 𝑙𝑘 and 𝛾2 via e.g., MCMC

WGP is available in GPTune, supporting multi-task and multi-objective optimizations

𝑟𝑊 𝑥1, 𝑥2 = 𝑢1 − 𝑢2
2 + 𝜎1 − 𝜎2

2

𝐾 𝑥, 𝑥′ = 𝛾2ෑ
𝑘=1

𝑑

exp(−
𝑟𝑊 𝑥𝑘 , 𝑥𝑘

′ 2

2𝑙𝑘
2 )

WGP provides 

more accurate 

confidence 

intervals
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Intensity 

detector

Origin

al

Ext. 

optimized

with xf14

Gain

+ Inj. 

Optimized

with FC96

Total Gain

xf14 (uVs) 1.48 2.23 42~50% 2.53/2.49 68~71%

fc96 (uVs) 11.22 12.61 8.4% 13.67/13.89 22-24%

Online Bayesian Optimization Improves EBIS Performance



• Optimize the luminosity by correcting its loss of geometric overlap due to 
beam optics mismatch.

• There are 17 tuning quadrupoles at interaction region, most of them are 
independent and with tight tuning range.

• There are 4 targeting objectives.  In order not to disturb the optics function 
outside the interaction region and IBS rate in the entire ring, additional 9 
constraints have to be satisfied.

• It is inefficient to use optimizer (GPTune) directly on all 17 quadrupole 
knobs, instead, GPTune controls the change of s* and use model to 
calculate correct quadrupole settings. (Dimension Reduction)
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@ IR boundary (6+0) @IP (1+4) Global (2+0)

Constraints 𝛽𝑥/𝑦 𝛼𝑥/𝑦 𝜂, 𝜂′ 𝜂 𝜈𝑥/𝑦

targets 𝛽𝑥/𝑦
∗ 𝑠𝑥/𝑦

∗

Online Optimization of Luminosity in RHIC
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GPTune Luminosity

Quadrupole 
knobs

GPTune Luminosity

Quadrupole 
knobs

s*,b*
model

generates 

Online RHIC Optimization Diagram

Brute Force Method Model Based Method in this Project

Brute Force Method
Pros: 

-- direct acting on the targeting objective
Cons: 

-- higher dimension
-- change global RHIC accelerator parameters

Model Based Method
Pros: 

-- lower dimension
-- maintain global RHIC accelerator parameters

Cons: 
-- potential mismatch between model prediction

and real settings
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+/-0.5 m +/-0.5 m +/-0.1 m 0.74-0.76m 

• Beam loss is acceptable. 

• ZDC rate was changed. Didn’t see any visible 
improvement with ± 10% pp noise.

• With +/- 0.8m, it is expected 17% change for ZDC rate.

• GPTune works with std  ±10% (pp) noisy signals ±15%! 

0.8 to -0.8m 

Blue Beam Loss

sPhenix ZDC rate (~ luminosity)
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• S*: +/-0.5 m without decay compensation

• S*: +/-0.5 m; +/-0.1 m.

• S*(x plane): 0.74-0.76m; 0.8m->0.4m->0m->-0.4m-
>-0.8m.

• S* > 0.8 m, MADX didn’t find solutions. 

• Integrated GPTune optimization framework, control software and experimental measurement loop worked.
• Didn’t observe significant luminosity signal (ZDC rate) improvement during optimization. 

First sPhenix ZDC Online Optimization Experiment

one quadrupole signal



• Three sets of experiment show some correlation between zero s* values and higher (red) 
zdc rate (proportional to luminosity), but with significant spreads.

• Imperfection in setting s* is too large to optimize luminosity in 10% level.

• Need to improve the control of s* for the next luminosity optimization experiment.
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Analyzing First Online Optimization Experiment Shows 
Imperfection in S* setting



Base line measurement:             s*x = -0.81m, s*y = 0.28m 

Intend to move s*x ->  0.5 m:    s*x = -1.30m, s*y = -0.48

Intend to move s*x -> -0.5m:     s*x = -1.09m, s*y = -0.40

Intend back to base line1:     s*x = -1.62m, s*y = -0.28m

Intend back to base line2:     s*x = -0.89m, s*y = -0.20m

• Significant differences observed between the expected settings and the real measured settings.

Experimental Measurements Show Measured S* 
Different from Intended S*



Tuning: 

• Use traditional model match show 
large discrepancy. 

• We developed tuning strategy using 
optics response matrix (from model)

• Adjust C to satisfy current limits.

Optics

Measurement:

• We took advantage of the correlations 
of BPMs to reduce the noise in data 
using Dynamic Mode Decomposition.
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We have to improve the optics control to make optics measurement and tuning reproducible.

Current

Response

Improvement in Optics Control @ IP



Resulting change in s*x

● 12 Datasets: Δs*x = [-.5, -.3, -.1, 0, .1, .3, .5]m

● Want relative data to follow trend: only IP8 horizontal should change

● WF_New and GRD_Old method able to keep trend on average everywhere 

● Able to show on average that Δs*x increases while Δs*y is fairly constant (blue vs black)

● WF_New method has less spread:

○ Preprocessing

○ Linear optimization method may seem sufficient for [-.5, .5]m
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Experimental Test the Improved Optics Control

old method

old method

new method

new method

• New method shows good tracking with model prediction



Tune Variation (one constraint) 
● Larger tune spread is seen as Δs*x increases.
● This tune variation is reasonable even with 

significant s* variation.
● This small tune variation can be compensated with 

feedback control.
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Δs*x = 0; Δ𝜈x ~.0002

Δs*x = -.5; Δ𝜈x ~.0005

Model:

Global Accelerator Parameters Stay Reasonable during 
the Experimental Test

Δs*x = .5; Δ𝜈x ~.005



● Demonstrated consistent control in changing Δs*x between [-.5, .5]m with minimum 

variation in Δs*y

○ While minimizing beta beat and variation in beta around the ring

● The maximum variation in the tune was still large (~0.01), when changing Δs*x =.5m
○ Although this is not a big issue without collision, we need to turn on tune feedback in later 

experiments

● Able to fit and retrieve s* and beta* with reasonable uncertainty

● Future Experiments: 

○ Change Δs* in both directions

○ On-line Bayesian optimization to maximize luminosity using s* as knobs
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The new optics tuning method has important applications in the EIC operation
due to x10 reduction of vertical beta function at IP!

Summary
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Year 1:

✓ Q1: Develop data manipulation package that can be used to extract and label data from RHIC measurements,

and to interface with the simulation packages; Build an analytical luminosity model from integration,

including the hourglass effect, crossing angle and IP optics.

✓ Q2: Modify the existing beam-beam simulation code to include the requirements of sPHENIX; Interlink the 

analytical model with RHIC optics model and the GPTune framework.

✓ Q3: Connect the GPTune to the simulation tools; Test the beam in RHIC for luminosity optimization using 

GPTune (without sPHINEX detector knobs).

✓ Q4: Analyze the initial experimental data and benchmark the analytical model; Build models and control 

knobs to maximize the performance of RHIC, especially the sPHENIX experiment; Explore new prior 

functions and kernel functions in the GPTune based on the physics knowledge.

Major Deliverables and Schedule 
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Year 2:

✓ Q1: Extend the GPTune Bayesian optimization framework’s capability to include the 

general experimental control knobs; Add the sPHINEX related control and analytical 

model in the optimization routine using GPTune.

✓ Q2: Apply the enhanced GPTune optimizer to RHIC measurement data to test the 

model and the control knobs using RHIC ‘s accelerator physics experiment (APEX) 

time; Test beam with luminosity optimization including sPHINEX requirements 

(maximize the vertex luminosity while minimize the background)

✓ Q3: Update the optics tuning model with the experimental data, improve the tuning 

strategy; Apply to RHIC measurement data to test the model using RHIC‘s accelerator 

physics experiment (APEX) time.

Q4: Continue to apply optimization to the RHIC measurement control knobs using RHIC

‘s accelerator physics experiment (APEX) time; Test beam with updated optimization

strategy and further improve sPHINEX performance.

Major Future Deliverables and Schedule 
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490 490 980

795

Summary of expenditures by fiscal year (FY):

490 305
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Thank You!


