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Luminosity Optimization Needed at the New RHIC Jet Detector
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* New jet detector SPHENIX was
commissioned in 2024,

* Physics study needs higher
luminosity. ryo
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Project Goals:

» Develop an advanced modeling framework based on first-principle physical
simulations, lattice models and the state-of-the-art machine learning methods.

» Apply this framework to the performance improvement of the RHIC
experiments (SPHENIX).

» Train and educate early career researchers.



Major Deliverables and Schedule

Year 1:

Q1: Develop data manipulation package that can be used to extract and label data from RHIC measurements,
and to interface with the simulation packages; Build an analytical luminosity model from integration, including
the hourglass effect, crossing angle and IP optics.

Q2: Modify the existing beam-beam simulation code to include the requirements of SPHENIX; Interlink the
analytical model with RHIC optics model and the GPTune framework.

Q3: Connect the GPTune to the simulation tools; Test the beam in RHIC for luminosity optimization using
GPTune (without SPHINEX detector knobs).

Q4: Analyze the initial experimental data and benchmark the analytical model; Build models and control knobs
to maximize the performance of RHIC, especially the SPHENIX experiment; Explore new prior functions and
kernel functions in the GPTune based on the physics knowledge.



Major Deliverables and Schedule

Year 2:

Q1: Extend the GPTune Bayesian optimization framework’s capability to include the
general experimental control knobs; Add the sSPHINEX related control and analytical
model in the optimization routine using GPTune.

Q2: Apply the enhanced GPTune optimizer to RHIC measurement data to test the model
and the control knobs using RHIC ‘s accelerator physics experiment (APEX) time; Test
beam with luminosity optimization including SPHINEX requirements (maximize the
vertex luminosity while minimize the background).

Q3: Update the optics tuning model with the experimental data, improve the tuning
strategy; Apply to RHIC measurement data to test the model using RHIC‘s accelerator
physics experiment (APEX) time.

Q4: Continue to apply optimization to the RHIC measurement control knobs using RHIC
‘s accelerator physics experiment (APEX) time; Test beam with updated optimization
strategy and further improve sPHINEX performance.



Advanced Modeling Framework for RHIC Lum. Optimization
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* Transfer learning improves the BO performance in RHIC luminosity optimization by using
the GP model trained by the physics simulation.
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BeamBeam3D: A Parallel Self-Consistent Colliding Beam
Simulation Code

Head-on collision

“ e Multiple-slice model for finite bunch length

- e New algorithm -- shifted Green function --
Long-range collision efficiently models long-range collisions

— ® e Parallel particle-field based decomposition to
achieve perfect load balance

Some key features of the BeamBeam3D

e Lorentz boost to handle crossing angle

..7 e Arbitrary closed-orbit separation

e Multiple bunches, multiple collision points
Crossing angle collision e Linear transfer matrix + one turn chromaticity

e Conducting wire, crab cavity, e-lens, crab
waist compensation model
/' \  Feedback model

e Wakefield model
https://github.com/beam-beam/BeamBeam3D



Bayesian Optimization: A Model Based Black-Box Method

¢ Problem: min y(x), x :parameter configuration
X

* Bayesian statistical inference is an iterative model-based approach
o versatile framework for black-box derivative-free global optimization

N

Sampling: y;... ¥,

Prior distribution

p(¥) = N (o, Zo)

Multivariate normal dist.

Surrogate Model f(x)
min f = miny

Update Posterior Distribution

N
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Gaussian Process: A Surrogate Model with Uncertainties

* GP defines a distribution over functions, and inference takes place in the
space of functions

¢ Every finite subset of variables follows multivariate normal distribution

* GP is specified by the mean function and covariance function
k(x,x") (kernel)
f(x) ~ GP(u(x), k(x,x"))
u(x) = E[f (x]
k(x,x") = E[(f (x) — p())(f (x") — p(x"))]

* Gaussian kernel: These are the parameters need to be trained in the GP model

2
k(x,x") = oPexp(— X (x‘l_‘) )

covariance is large if two poinis’are close

Vauld|\” V2v|d
(Can use other kernels ... ) Matém: Kyatern (2, 2') = T() ( £| ) Ky ( g| |)
14
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Bayesian Optimization Software Package: GPTune

Some key features of GPTune include:

(1) relies on dynamic process management for running applications with varying core counts and GPUs
(2) can incorporate coarse performance models to improve the surrogate model

(3) allows multi-objective tuning such as tuning a hybrid of objectives

(4) allows multi-fidelity tuning to better utilize the limited resource budget

(5) supports checkpoints and reuse of historical performance database.

Two-Objective Luminosity Minimization, npilot = 30, nrun = 60

29.5 . . . . .

o« o™ *. e on-line accelerator optimization must be constrained
® e © L ] IP12

@

29.0 A LN ]

28.5

background
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27‘0 L T T T T T T T T
—30.25 -30.00 -29.75 -29.50 -29.25 -29.00 -28.75 -28.50
Y1l = -log(L1)

https://gptune.lbl.gov vertex signal




Bayesian Optimization with Black Box Constraints Needed for
Safe On-Line Optimization

Optimization Problem:

’

f1(x)

min ¢ ---  subject to g;(x) <0,h;(Xx) =0

fa(®).

The Objective function f (e.g. luminosity) is approximated with a Gaussian process (GP).

The constraint functions g and h (e.g. beam losses) are approximated
with another Gaussian process.

During the optimization process, both GPs are updated with the available data points.

The constraint GP will be used in the BO to guide the prediction of next search point.



Verification of Bayesian Optimization with Black Box

Con

straints
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Application of Bayesian Optimization with Black Box

Constraints to a RHIC Example
X: the quadrupole strength of two lattice elements

L ny _ n n
minimize: - f(X") = =7,(X", 5ip) 7 (X", $ip)  bo7_qd3 and bo7_cf4
where Yz (*; ‘) and Yy, -) are horizontal and vertical Twiss functions

o) =mus A s C ) S ppon ) MR gy )

1€l,
Here, the set /. denotes the index set for the lattice elements bo6_qd1, bo7_qd1,

b010_qd1, boll_qgdl, and bo2_qd1. o ) L
Value of the objective function at each optimization

Value of the constraint equation at each optimization step step for the problem with different c
for the problem with different ¢
WWVTTTYY W —— ¢=400 —2.050 A
0.40 7 c=0.10 " v
—2.075
0.35 —— ¢=0.15 ~~A J
—— ¢=0.20 —2.100
0.30 - —— ¢=400
_ ) —2.125 1 c=0.10
x 0257 = _2.150 —— ¢=0.15
> /VJ‘ —— ¢c=0.20
0.20 - T —2.175 A
0-15 7 MWWM —2:200 1
0.10 - -2225 0 T—n
0 05 | I I I | I 1
' T T T - T T 0 20 40 60 80 100
0 20 40 60 80 100 n-th search
n-th search

* Smaller objective function is achieved with weaker constraints. H



New Feature in GPTune: Wasserstein-Based Kernels for Inputs
with Uncertainties

¢ Functions with input uncertainty
« Assume a collection of function samples (x;,y;), i < n with observation errors
€;~N(0,u?) and input errors §;~N (0, 6{°)
yi =f(x; +6;) + ¢
» For d-dimensional problems:
Vi = (%1 + ;10 s X +8;) + €
. Sid represents known or unknown uncertainty, in e.g., control knobs of accelerators

Error-in-Variable Regression lllustration

5
] —— True Function

4 @ X Locations
® W Noisy Observations
37 ===y Noisy Responses

o | —— e ——

T
0.8

<
f)

T T T
0.0 0.2 0.4



Wasserstein-Based Gaussian Process (WGP)

Wasserstein distance between two normal distributions x; ~N(uy, 0%), X, ~N (U5, 0%)

Tw (X1, %2) = \/(u1 —Up)? + (0 — 03)?

Assume f follows a GP: f(x)~GP (0, K(x,x")), with Wasserstein-distance-based kernels:

ke =r ] 1exp<—rW("2"l’x") )
k

The log-likelihood function can be optimized w.r.t. [, and y? via e.g., MCMC

Regular GP Wasserstein GP

« Training data s Training data
— Test data — Test data
44 —— Prediction 4 —— Prediction

WGP provides
more accurate
confidence
intervals

WGP is available in GPTune, supporting multi-task and multi-objective optimizations

16



Online Baye5|an Optimization Improves EBIS Performance
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xf14 (uVs) | 1.48 2.23 42~50% 2.53/2.49 68~71%
fc96 (uVs) | 11.22 | 12.61 8.4% 13.67/13.89 22-24%
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Online Optimization of Luminosity in RHIC

* Optimize the luminosity by correcting its loss of geometric overlap due to
beam optics mismatch.

* There are 17 tuning quadrupoles at interaction region, most of them are
independent and with tight tuning range.

* There are 4 targeting objectives. In order not to disturb the optics function
outside the interaction region and IBS rate in the entire ring, additional 9
constraints have to be satisfied.

* It is inefficient to use optimizer (GPTune) directly on all 17 quadrupole
knobs, instead, GPTune controls the change of s* and use model to
calculate correct quadrupole settings. (Dimension Reduction)

| @ IRboundary (6+0) @IP (1+4) Global (2+0)

Constraints By Ay /y n,n n Vx/y

targets B S
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Online RHIC Optimization Diagram

Brute Force Method Model Based Method in this Project
g* B* m Quadrupole
Quadrupole ’ knobs
knobs ~ —

/N

GPTune {7 | Luminosity

L A4

GPTune — Luminosity

Brute Force Method Model Based Method
Pros: Pros:
-- direct acting on the targeting objective - lower dimension
Cons: -- maintain global RHIC accelerator parameters
-- higher dimension Cons:
-- change global RHIC accelerator parameters -- potential mismatch between model prediction

and real settings



GPTune Used Signal

First sPhenix ZDC Online Optimization Experiment

S0y

18:27:28 Beam Decay

Beam loss rate [%/h]
nY 4+ 8
(=] (=1

-
(=]

' Blue BeamLoss

Syioy Agzmin

0
18:10

18:20 18:30 18:40 18:50 19:00 18:10 19:20 19:30 19:490 18:50 20:00 20:10 20:20

Bluelecay

21071

18:27:28

+-05m  +/05m

199747 @ p .

#-01m  0.74-0.76m

1804

RTT001 SRR P WO PN | I

6ne dadru EoIe Si 5 nal 5
z q z p g © 0.8to-0.8m

18:10

18:20 18:30 18:40 18:50 19:00 18:10 19:20 19:30 19:490 18:50 20:00 20:10 20:20

biB-qf 3-ps, current sdatafirraytl, ] (D)

18:27:28

ZDC coincidence rate [kHz]

.. sPhenix ZDC rate (~ luminosity)  :

18:10 19:20 19:30 19:490 19:50 20:00 20:20

Time (Start Fill = 34483)
SPHENTH, ,ZTC,

18:50 19:00

18:30

18:20 18:490 20:10

S*: +/-0.5 m without decay compensation
S*: +/-0.5 m; +/-0.1 m.

S*(x plane): 0.74-0.76m; 0.8m->0.4m->0m->-0.4m-
>-0.8m.

S* > 0.8 m, MADX didn’t find solutions.

Beam loss is acceptable.

ZDC rate was changed. Didn’t see any visible
improvement with £ 10% pp noise.

With +/- 0.8m, it is expected 17% change for ZDC rate.

GPTune works with std +10% (pp) noisy signals £15%!

* Integrated GPTune optimization framework, control software and experimental measurement loop worked.
* Didn’t observe significant luminosity signal (ZDC rate) improvement during optimization. 20



Analyzing First Online Optimization Experiment Shows
Imperfection in S* setting

s stary [m]

0.4 1

0.2

2024-05-16 19-01-25.db/GPTune-Demo.json

F

—420

- —430

&

B

[=]
ZDC Signal

- —450

—460

s stary [m]

0.4 A

0.2

2024-05-16 18-37-35.db/GPTune-Demo.json

-0.4 -0.2 0.0 0.2 0.4
s star x [m]

- —480
- —500

F—520

I —-540

ZDC Signa

s stary [m]

2024-05-16 19-30-43.db/GPTune-Demo.json

0.1001 ®

0.075 A

0.050 +

0.025 A

0.000 -+

—0.025 A

—0.050 A

—0.075 A

—0.100 A

—0.1006-0.075-0.056-0.0250.000 0.025 0.050 0.075 0.100

s star x [m]

* Three sets of experiment show some correlation between zero s* values and higher (red)
zdc rate (proportional to luminosity), but with significant spreads.

* Imperfection in setting s* is too large to optimize luminosity in 10% level.
* Need to improve the control of s* for the next luminosity optimization experiment.
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Experimental Measurements Show Measured S*
Different from Intended S*

File Laftice SetUp Corrections

Slﬂelalmanhase Advance[ Betatron (w/o model) I Beta Beat I Chi-Square [ Total Phase Advance L

Base line measurement: s*x =-0.81m, s*y =0.28m

Intend to move s*x -> 0.5m: s*x=-1.30m, s*y =-0.48
Intend to move s*x ->-0.5m: s*x =-1.09m, s*y =-0.40

Intend back to base linel: s*x =-1.62m, s*y =-0.28m
Intend back to base line2: s*x =-0.89m, s*y =-0.20m

]
The orbit(s) have been loaded. |:

« Significant differences observed between the expected settings and the real measured settings.



Improvement in Optics Control @ IP

Tuning:

e Use traditional model match show
large discrepancy.

* We developed tuning strategy using
optics response matrix (from model)

AQO = BAI
4
Response

Al = B~'AO — null(B)C

* Adjust C to satisfy current limits.

Measurement:

* We took advantage of the correlations
of BPMs to reduce the noise in data
using Dynamic Mode Decomposition.
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Experimental Test the Improved Optics Control

Resulting change in s*,

As” [m]

)

Measure

12 Datasets: As*, = [-.5,-.3,-.1,0, .1, .3, .5]m

Want relative data to follow trend: only IP8 horizontal should change

WF_New and GRD_OIld method able to keep trend on average everywhere

Able to show on average that As*, increases while As* is fairly constant (blue vs black)

WF_New method has less spread:
o Preprocessing

o  Linear optimization method may seem sufficient for [-.5, .5]m

As, at P8
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R

a
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=0.2
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Expected As* [m]

* New method shows good tracking with model prediction
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Global Accelerator Parameters Stay Reasonable during

the Experimental Test

SsXx = -8.5
Model: horizontal tune before: 0.6934846999999991
’ horizontal tune after: ©0.6985311500000009

Difference: 0.005046450000001812

Tune Variation (one constraint)

e Larger tune spread is seen as As* increases.
e This tune variation is reasonable even with
significant s* variation.
feedback control.

As*, = 0; Av, ~.0002
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Summary

e Demonstrated consistent control in changing As* between [-.5, .5]m with minimum

variation in As*,
o  While minimizing beta beat and variation in beta around the ring

e The maximum variation in the tune was still large (~¥0.01), when changing As* =.5m
o Although this is not a big issue without collision, we need to turn on tune feedback in later
experiments

e Able to fit and retrieve s* and beta™ with reasonable uncertainty

e Future Experiments:

o Change As* in both directions

o On-line Bayesian optimization to maximize luminosity using s* as knobs

The new optics tuning method has important applications in the EIC operation
due to x10 reduction of vertical beta function at IP!
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Major Deliverables and Schedule

Year 1:

v Q1: Develop data manipulation package that can be used to extract and label data from RHIC measurements,
and to interface with the simulation packages; Build an analytical luminosity model from integration,
including the hourglass effect, crossing angle and IP optics.

v Q2: Modify the existing beam-beam simulation code to include the requirements of SPHENIX; Interlink the
analytical model with RHIC optics model and the GPTune framework.

v Q3: Connect the GPTune to the simulation tools; Test the beam in RHIC for luminosity optimization using
GPTune (without SPHINEX detector knobs).

v Q4: Analyze the initial experimental data and benchmark the analytical model; Build models and control
knobs to maximize the performance of RHIC, especially the SPHENIX experiment; Explore new prior
functions and kernel functions in the GPTune based on the physics knowledge.



Major Future Deliverables and Schedule

Year 2:

v Ql: Extend the GPTune Bayesian optimization framework’s capability to include the
general experimental control knobs; Add the sPHINEX related control and analytical
model in the optimization routine using GPTune.

v Q2: Apply the enhanced GPTune optimizer to RHIC measurement data to test the
model and the control knobs using RHIC ‘s accelerator physics experiment (APEX)
time; Test beam with luminosity optimization including SPHINEX requirements
(maximize the vertex luminosity while minimize the background)

v Q3: Update the optics tuning model with the experimental data, improve the tuning
strategy; Apply to RHIC measurement data to test the model using RHIC*s accelerator
physics experiment (APEX) time.

Q4: Continue to apply optimization to the RHIC measurement control knobs using RHIC
‘s accelerator physics experiment (APEX) time; Test beam with updated optimization
strategy and further improve sPHINEX performance.



Summary of expenditures by fiscal year (FY):

FY22 (Sk) FY23 (Sk) Totals (Sk)
a) Funds allocated 490 490 980
b) Actual costs to date 490 305 795
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