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BUQ project outline

Study of complex phenomena often requires the rigorous comparison of
theory/model calculations and experimental measurements
— Inverse Problem

— —

P(datal6)P(0)
P(data)

0 : Model parameters

P(6|data) =

Solution: Bayes’s Theorem

Widespread application in NP, HEP, Cosmology, Materials Science,...
 constrain model parameters

« validate the physical picture underlying the models

 discover new effects

Bayesian inference can be computationally challenging in practice because of
 large number of nuisance parameters
 high computational cost of the model calculations
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BUQ project

Develop and deploy ML-based analysis tools for efficient Bayesian Inference in a broad
range of NP experiments
« mass and fundamental nature of the neutrino

 study of the Quark-Gluon Plasma
« mapping of natural and anthropogenic radiation environments

All require Bayesian inference, very different in character
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Uncertainty quantification

Surrogate Modeling ii Posterior Sampling
Experimental
Measurements » 1 | 1 §-8 (w800 i %
E : ' I Physical
Sowes  Taegm Properties
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Theoretical *Multifidelity learning | ] suess ¥ won A G radient-based samplers 1
Modeling * TE;ansf.er learning . ==l el N Deterministic Langevin Mante Carlo
i =Experimental design i i
Bayesian Inference for Nuclear Physics

Meaningful measurement or parameter constraint requires the specification of uncertainty
 Standard discrete MC methods are not differentiable: uncertainty not well-defined

« UQ requires differentiable samplers: novel ML-based approaches
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Neutrino-less double beta decay (OvBp)
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T Bayeslan Inference and UQ for Ovpp decay

Experimental goal is to measure mono-energetic peak at Quw
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— increase sensitivity by background reduction (Bl) at Qgp and simultaneous increase of mass (M) and improvement of the energy resolution (AE)
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Bayeslan Inference

and UQ for Ovpp decay
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Example GERDAS L200 commissioning:
< 10 detector datasets (< 20 cts in all
datasets)

Qpe, O, P8, Pi®
— < 50 nuisance parameters

EGEND-1000: 10x detector channels
~ 100 measurement campaigns
~ 150 detector datasets
Qpg, Ti, PiE, P
—+ 105108 nuisance paramete

The total likelihood is constructed
weighted with the Poisson term:
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as the product of all £;

___—— Poisson weight
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where:

+ Ny total number of events observed in the ith partition
« E individual event energies in the ith partition
« O = FWHM,;/(2+2In2); energy resolution in ROI

= the average FWHM across partitions is 3.29 keV

14 | Ann-Kathrin Schiitz
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n " AL E 0 Bayesian parameter estimation and uncertainty quantification in Nuclear Science
—“—\,\_ with focus on (Double) Beta decay

Neutrinoless double beta decay Beta decay - Neutrino mass
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Quark-gluon plasma

QGP Properties

Spectra, anisotropic flow Shear and bulk viscosities 1, {

vn flow correlations (T™(x, )T™(0,0))
Jets and heavy-quarks

Energy-momentum transport
Jiw and Y suppression Bayesian g, é,&, (Fir(x")F(0))
Photons and dileptons Inference _

Color screening

Theoretical Modeling (FO(x,00F2(0,0))
M Electromagnetic emissivity
JETSCAPE (#(x, 0j*(0,0))

Stage 1 Stage 2 Stage 3

Post-hydro

Pre-hydro Hydro
Parameters @ * ‘ ‘ ‘ B a ‘a) t-!‘ . Observables (8, t)
Fidelity | - |t \ e, )

\ Multi-stage sir:réi%tic;n Parameter space is modest: 5~30
> P(datald)P(f) Bottleneck: computationally
P(f|data) = P(data) expensive forward model
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models (expensive) | training experimental
~5-30 parameters data design
/ Experimental
data

posterior
GP emulator w/ PCA /

(scikit, PCGP, PCSK) \
I MCMC

(emcee, PTLMC, pocoMC)

Bayesian inference: QGP Legend

Hendrik, Lipei, Raymond

predictions

posterior analysis:
- ML: use posteriors
as new priors

- clustering for

closure tests

||

measures for closure multimodal posteriors
uncertainty & tests
honesty Bayes factor
(model selection)
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Bayesian inference: QGP

models (expensive)

. training
~5-30 parameters data

B —— =
* Forward model cost depend on

physics processes of interest
* Usually O(millions) core-hours over
entire design parameter space
* Critical: selection of design points
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Codes Assessments

Bayesian inference: QGP =

| ® So far, predominately
standard/untuned packages
| * Compute time usually not prohibitive: §
| e GP: (~seconds)

| * MCMC: (~hours-day)

GP emulator w/ PCA
(scikit, PCGP, PCSK)

MCMC
(emcee, PTLMC, pocoMC)
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Legend

Posterior Applications

Bayesian inference: QGP

experimenta
design

'« Interest in:

¢ Parameter extraction

e Experimental design

* Prediction further observables
using e.g. MAP or full posterior

* Refining prior distributions for

next analyses

posterior 4 predictions

posterior analysis:

- ML: use posteriors
as new priors

- clustering for
multimodal posteriors

>

Differentiable samplers: UQ
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Radiation imaging of the environment

Radiation mapping overall goals

Where is the radiation and how bad is it? l.e., what is the radiation distribution in the scene?

LiDAR + rad measurements — Scene representation — Rad image reconstruction
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Inverse problem — Bayesian Inference

Unique computing challenge: accurate real-time image reconstruction
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Multi-fidelity ML for reconstruction

Rad image reconstruction

High-fidelity s After low-fidelity reconstruc‘uon perform image
MEEEV T REGIE ) Il reconstruction
, . . upscaling to genera elity map
contextual information i
Image upscaling by machine learning algorithms with

significantly less computation

Low-fidelity
reconstruction Radloacnwty map

with more pixels

Image upscaling
(super resolution) B

100

acceleration of data processing to enable real-time 01'@
eal-time reconstruction of high-fidelity results

A7 °  @): Higher computational cost (=) * reduction of COMPUIET TEINOTY USage so compact computer
0 23 4 can be used on smaller. portable edge systems
Radioactivity map @ : Lower computational cost © o (can’t put an NVIDIA 4090 GPU on every system')

with fewer pixels « reduction of battery usage which allows more system

operation time
Note: Only 2D map is considered
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MCLMC for image reconstruction

Micro-canonical Langevin Monte Carlo
Fast MCMC sampler developed by Jakob Robnik and Uros Seljak

Robnik, Jakob, and Uro$ Seljak. "Fluctuation without ; : - A :
dissipation: Microcanonical langevin monte carlo." arXiv Consistent Samplmg performance by MCLMC: different prior

preprint arXiv:2303.18221 (2023). distribution of the radiation activity leads to similar posterior
distribution
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Comparison of sampling times for MCMC samplers

For same reconstruction scenario, MCLMC is significantly faster than other MCMC samplers,
which enables real-time (or near real-time) image reconstruction with uncertainty quantification.

Number of samples;
sampler : : convergence
computation time

MCLMC

HMC

NUTS
RMHMC

Metropolis-Adjusted Langevin Algorithm
(MALA)

random walk

ellip_slice

le5;~13s
1le4; ~ 1 hour 6 mins

1000; ~ 7 mins
100; ~30s
100; ~ 2 mins

100; ~ 1 min 20s

1000; ~ 40s
1e5; ~ 1 hour 9 mins
100; 36 s
1le4; 6 mins

Fully converged
Fully converged

Some convergence, but not fully
converged

Far from convergence

Far from convergence

Far from convergence

No convergence at all
Far from convergence
Far from convergence
Far from convergence
No convergence at all



BUQ project status

Neutrinos:

« evaluate the bottleneck and requirements of the Bayesian methodologies

« validate ML-based sampling approaches; successfully developed a Bayesian
Optimization model combining Conditional Neutral Process with a Multi-Fidelity
Gaussian Process.

Quark-Gluon Plasma:

« implement multi-fidelity approach to Bayesian Inference (Config model/Duke)

« systematic comparison of GP Emulators for (3+1)D bulk evolution (publication)

* build numerical framework to cross-compare MCMC algorithms (affine invariant,
Parallel tempering, pocoMC).

* In progress: comparison of Bayesian evidence in various model setups.

Roch, Jahan and Shen, PRC 110 (2024) 044904
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FIG. 2. (Color Online) The averaged RMS errors £ for the three different types of GP emulators. Different training sets are
separated by black lines. All emulators are trained with the same 970 LHD points.
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Project status (cont’d)

Radiological imaging:
» development of image upscaling and image inpainting methods for both
radiological image reconstruction and ground surface estimation (both multi-
fidelity-based and non-multi-fidelity for comparison).
 Initial upscaling results show good performance. Initial inpainting results
also show very good performance (Conference presentsation at IEEE | |
NSS/MIC 2024) SEE -

20
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Algorithms:

« working closely with all three NP groups (Neutrinos, Quark-Gluon Plasma,
Radiological Imaging)

* Neutrinos: new multi-fidelity Bayesian optimization framework for neutrino
shield simulations.

*  QGP: new multi-fidelity Bayesian model for cost-efficient emulation of
experimental observables (publication in preparation)

* Radiological Imaging: new Bayesian model for image inpainting with
promising results (publication in preparation)
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Budget

FY23 ($k) FY24 ($k) Total ($k)

Allocated

LBNL 338K 354K 692K
Duke 64K 66K 130K
UC Berkeley 182K 180K 362K
Wayne State 77K 39K 116K
total 661K 639K 1300K
Expenditures

LBNL 306K 38K 344K
Duke 48K 4K 52K
UC Berkeley 49K 11K 60K
Wayne State 70K 6K 76K
Total 473K 59K 532K

FY23 expenditures were significantly below initial projection

Reason: postdoc hiring took several (many) months after start of project
» Positions require special skills, not common in the community

* Inone case we waited 12 months for a student to graduate

Project is now fully staffed
— we project the request of an NCE in FY26 for ~12 PD-months
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Deliverables

FY23
* Neutrinos: Implement fast gradient-based sampling; implement surrogate modeling.
* QGP: Implement Multi-fidelity learning and transfer-learning methods; initial

performance studies. Integrate gradient-based posterior sampling.
» Radiological Mapping: Implement Multi-fidelity learning, transfer-learning, and
gradient-based posterior sampling methods. Carry out initial performance studies.

FY24
* Neutrinos: explore new gradient-based sampling and surrogate modeling methods;
implement new methods that integrate more detector information, explore

performance.
* QGP: Explore performance of Multi-fidelity learning, transfer-learning, and gradient-
based sampling, and utilize for novel, large-scale multi-messenger analyses of QGP

data from RHIC and LHC.
» Radiological Mapping: Full assessment of new algorithms and first application in

ongoing projects in the field; implement and assess new methods for dimensional
reduction.
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Multi-fidelity surrogates

Idea: Use multi-fidelity data {/(0;,t;)}/-, to train a GP surrogate
model for predicting the highest-fidelity simulator £ (8, 0)

tZI/’;/’P/“’/'P/’P/ﬁ /'P /4~ /’P / . t=1: lowest-fidelity

t = 0: highest-fideli
@] © @] g y

CONglomerate multi-Fldelity

/ / . Gaussian process modeling
t2 ] t2 & t2

(CONFIG; Ji et al., 2024 JUQ)




Multi-fidelity surrogates

B

] Standard surrogates
Multi-fidelity emulation of the QGP (Ji et al,, 024) e

. T

. TPPUDT

= TWY (ARITH) Multi-fidelity surrogates
= CONFIG

_'12_

log-MSE

_14_

ol \\

750 775 .00 825 850
log—CPU hours

« r = 2 fidelity parameters (spatial mesh size, simulation timestep)
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ﬂ with focus on (Double) Beta decay

== l ' Onbb decay Beta decay - Neutrino mass
- ; \& St e et e
Wi
LEGEND KATRIN
LEGEND : ==
Background spectral fit with pdfs 4 rf:g&ctr:al mod:!:]i?h h iy ‘ -
model over several sub- beta deca
datasets associated detector
systematics
e ,’t i ter— il _ M,
i J Project8
+ "{ \"Ljr{‘H:*T\Hl{_ H'- |1 ---------
Bottlenecks: Bottlenecks:
* Increase of sub-datassts * increasingly high dimensional data due to large number of detector
* Marginalization over O 105) nuisance parameters describing detector systematics gystematics
and bkg * “Long" calculation time of detector response time
HNeed: Meed:
* More performant parameter estimation tools and analysis strategies that will handle + differentiable model
large datasets * improved sampling tools e.). gradient-based sampling
= fit which incorporates additional informations into the likelihood (psd, veto signals, ... * multi-fidelity ML techniques

20
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Transfer learning surrogates

Transfer learning GPs (Liyanage et al., 2022 PRC; Wang et al., 2024+ JUQ):

+ lIdea: Using simulations on a related system (e.g., from previous analyses),
apply transfer learning for cost-efficient surrogates on target system

Different Tasks
] -

(@) (b)

« Comparably accurate surrogates with reduced runs on target system

... Oor more accurate surrogates with comparable runs on target system
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Transfer learning surrogates

Liyanage et al. (2022 PRC):
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0.12
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0.04

Target: Au+Au (Grad)

\ —— multifidelity linear
'-\ Standard GP

100 200~~o_300____4a0e=" 500
Number of high fidelity points used in training

0.14

0.12

Average MSE
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PRl

Source: Pb-Pb collisions at 2.76 TeV with Grad viscous correction

Target: Pb+Pb (CE)

\ —— multifidelity linear
\ Standard GP

s
/ K

96w 200 _ 1502007 250 300 350 400
Number of high fidelity points used in training

More accurate surrogates at
reduced computational cost!
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Normalizing flows

pJ‘P n orif!inal space

z=f(0)

0=f"(2)

pz(2) = pe(f~(2))

det

of 1(2)

PJ‘P n [a‘tey\t space

-4

0z
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Normalizing flow preconditioning

po(\P " cﬁginal space pan n |mten‘t space
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