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Neutron dripline science

•
– “A powerful way to develop a predictive understanding of the 

changes in nuclear structure that occur near the driplines is to 
track how nuclear properties evolve … as the neutron number 
increases, from the proton to the neutron dripline.”

• – “The territory of neutron-rich nuclei is the most 
fertile ground for research in nuclear structure.”

– “The unique data on bound and unbound states of 
oxygen isotopes have been used to benchmark ab-
initio modes of nuclei … resulting in the 
development of a vastly improved theoretical 
formalism.”

Understanding involves an interplay between

• Single particle motion

• Many-body correlations

• Neutron continuum



Neutron-unbound systems
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Extracting information
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Left and right figures are from Z. Kohley et al., PRC 87 011204(R) 2013 (2015)

Three-body correlations
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Invariant mass spectroscopy with MoNA-LISA
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Image from B. Monteagudo, Recent experiments and future 

perspectives at MoNA collaboration at FRIB, presentation at 

HaloWeek’24, Chalmers University of Technology, June 2024



Multi-neutron detection

1

2

- Plastic scintillator bars

- Indirect, neutron detection via scattering

- Scintillation light detected in PMTs coupled via light guides

- (x,y,z), ToF, scintillation light recorded

- Sparse hits are time-sorted
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Causal filters
Spatial and time separation examined for causal connections between hits

For additional causal filtering methods, see:

- Kondo et al. Nuclear Inst. And Methods in Physics Research B 463 (2020)

- Nakamura and Kondo, Nuclear Inst. And Methods in Physics Research B 376 (2016)



Leveraging machine learning methods

- Applied to recover neutron 

multiplicity and first interaction 

points

- Tested a number of different ML 

techniques

- Found that ML methods resulted in 

marginal improvement for 

multiplicity extraction; better for 

determining first interaction points

- Designed for higher neutron energies 

(200 – 1000 MeV)

From Fig. 2



Leveraging machine learning methods

Project goals:

1. Investigate application of neural networks to event 

classification

• Applicability across experiments

• Extension to ‘multiplicity reduction’

2. Provide research training opportunities for VSU 

undergraduates

Neutron KEs range from 40 – 200 MeV
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Calculated Inputs
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Applied to 

data: 26O

• (# CC-gated) / (# MLP-gated) = 1.5

• % difference in fitted weights:

• G.S. (10%)

• 2+ (10%)

• Nonresonant (5%)



Testing with LANSCE data

Incident neutron energy > 5 MeVee + gated on target bar

~20 MeV 83% 94%

~40 MeV 84% 98%

~60 MeV 86% 99%

Fraction of multiplicity 2 events 

predicted to be 1n scattering

All images from A. Kuchera
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Survey for human-assigned event labels

• Provide assessment on a 
sliding scale 0 (1n) – 100 (2n)

• First survey deployed
– 100 measured events

– 12 simulated events (tracers)

– 14 student responses so far

– Analysis in progress

• Second survey in preparation
– 200 measured events

– 20 simulated events

– Separate into 50-event chunks



Human- and machine-

assigned labels

• Preliminary comparison 

for ‘tracer events’

• Background is ‘easier’ to 

classify

– More correct IDs

– Better agreement
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Project deliverables

Deliverable Projected Status

ROOT + Python codes May 2024 Completed

Blender animations of data events June 2024 Completed

Survey for human-determined labels March 2025 60% complete

Integration into analysis pipeline August 2025 50% complete

Publication August 2025 20% complete



Budget summary

FY23 [k$] FY 24 [k$] Total [k$]

Funds allocated 256 224 480

Actual costs 160 45 205



VSU Undergraduate Researchers

• Alaura Cunningham, 2020 – 2021, DNP & NSBP 2020

• Avery Monroe, 2021, VSU Undergraduate Research Symposium 2021

• Megan Brayton, 2021, MSU AGEP conference 2021

• Darrius Sykes, 2021-2022, MSU AGEP conference 2021

• Kyra Rudolph, 2021 – 2022, NOBCChE regional 2022, VSU Undergraduate Research Symposium 2022

• Kayla Mills, 2021 – 2022, VSU Undergraduate Research Symposium 2022

• Clifton Kpadehyea, 2022 – 2023, DNP 2022

• Jeffrey Walters, 2021 – 2023, NOBCChE regional 2022, VSU Undergraduate Research Symposium 2023

• Emmanuella Kumi, 2022 – 2023, VSU Undergraduate Research Symposium 2023

• Jaylen Rasberry, 2022 – present, DNP 2022, NOBCChE 2022, NURVa 2024

• Isaiah Leonard, 2023 – present 

• Trinity Allen, 2024 – present

• Jalen Felix, 2024 – present, MSU AGEP conference 2024

• Raven Mott, 2024 – present

• Sarah Timothy, 2024 – present

• Justin Brown, 2024 – present

Jaylen Rasberry presents at the Network 

for Undergraduate Research in Virginia 

Conference, 26 October 2024
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