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ATLAS ACCELERATOR FACILITY OVERVIEW
- US DOE National User Facility covering a broad range of nuclear science
- Few hundred Users per year, >6000 Hrs running time, range of experimental equipment

- High intensity stable beams up to ~18 MeV/u [100’s of particle nA - uA]
- Radioactive beams [source/re-accelerated - nuCARIBU, in-flight - RAISOR]
- In-flight beams account for ~20 — 30% of the yearly hourly usage [CY2019 — CY2024]
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PRIMARILY UTILIZING TRANSFER REACTIONS FOR IN-FLIGHT BEAM PRODUCTION

Highly selective reactions, provide good kinematics & sizeable cross sections
-> Allow for multiple energy / beam+target options to produce a single beam type

Primary stable beam

Stable target /
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Primary stable beam

Both 33S(d,n) and 3*S(p,n) reactions were used in
CY24 at ATLAS to produce beams of 34Cl:

w
o

Stable target

O*‘

Newly produced 32ar 3Ar
radioactive in-flight beam

34Ca 3SCa GSCa 37Ca SBCa SQCa

33K 34K 38K

37 Ar

31 cl 3ZC| 3GCI

3OS 31 s 358

333(d,n) -> 34CI beam with 60% isomer content
34S(p,n) -> 34Cl beam with only 30% in isomer state

34p

OPERATIONAL CHALLENGES FOR ATLAS IN-FLIGHT BEAMS
= TRANSFER REACTIONS W/ UNKNOWN ANGULAR DISTRIBUTIONS

= RANGE OF ENERGIES, INTENSITIES, REACTION TYPES REQUIRED
= UNIQUE EXPERIENCE FOR EACH PRODUCTION / TUNE
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OPERATIONAL CHALLENGES FOR ATLAS IN-FLIGHT BEAMS
= TRANSFER REACTIONS W/ UNKNOWN ANGULAR DISTRIBUTIONS

= RANGE OF ENERGIES, INTENSITIES, REACTION TYPES REQUIRED
= UNIQUE EXPERIENCE FOR EACH PRODUCTION / TUNE
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RAISOR DESIGN LAYOUT AND FEATURES

Multiple key design features considered & implemented

* Dipole maximum Bp=1.75

« Magnetic chicane w/ quadrupole doublet bookends R | B e
« Momentum selection & stopping of primary beam current ~q21@>20) ,,‘ SETA

Total length

Angular acceptance 75 mrad
Mid plane dispersion 1.3 mm/%
Max rigidity [-30 cm] 1.75Tm

Dipole field integral 0.73 Tm

Quadrupole pole tip 1T
Dipole gap 8 cm

Quadrupole aperture 16 cm

Momentum acceptance <20%

Argonne &
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Ni T I Ni I
10 MeV/u Co I T 1] s e Estimated rates > 106 pps } } } I“I 50
* Targets - 1 mg/cm2 Fel — " T
. i Ci
Largest (not h|ghgst) v - -
charge state fraction _ T o [
Sc| 38 38
36
k[T particles / sec K
Ar Ar|
Cl 34
s >107 s ]
P 32
si 0 >106 P - 32
Al
o o L >10° * Fusion-evaporation reactions
2 >104 7" ® .« Collective structures and high-
3 .
o ® B 2 >103 » spin states
e = o >102 * e. g.yray spectroscopy w/
B 16 . issi il N
M 7 T Smooth transmngsmn functlolns‘ tagging
o ° Salcmateg or.esumzmd total o's d(>10% * Weak cross-section measurements
" ¢ s nreacted primary beam suppressed (>10%) « Astrophysics and Fusion cross
nlLlz 4 » Contamination = Primary beam scattering or tail & X
other reaction channels sections _ )
www.phy.anl.gov/airis/rates.html + >25% transported to experimental areas  Transfer and fusion reactions
ey s
e Estimated rates > 104 pps * Estimated rates > 103 pps e H
T = it
Coj 50
F°|_I [T1 . o I
M 44 46 9
Cu
v c'ﬂ = i T
s Ti ]ﬁ 40 ::[ N &0 22
4:'_0 36 |
K : 5’r
ar CTTRGENT
cl 3 5
s_l cof J 36 38
[ | 32 K
Si 30 AEERR (I 32 3¢
Al C1 2!
. g | g Pairing in Nuclei s 1 i 1 28 30
N[ 2 * (t,p) and (3He,p) reactions on a1 of ] [ 2679 )
o ® B2 neutron-rich and N=Z nuclei PRERI 2 * (,p), (py) reactions on
o = 2 « Single-Particle Structure e 18 20 neutron-deficient beams
B 16 . i 6 .
Be = Transfer reactions v H L * Surrogate (3He,d) reaction
- 10 * Inelastic scattering ¢ [ -+ L o )
W * Possibly fusion evaporation selif il * Spectroscopic information
n . . Li
with neutron-deficient beams e 1 e on analog states }
« 38(Ca, 42Ti, 56N, (60Zn) etc. ‘¢ 8




RAISOR COMMISSIONING AND OPERATING PRINCIPLES
AIRIS project complete fall 2018, RAISOR has been in operation since 2019

>25 radioactive beam measurements at 4 different
experimental locations [+10’s m downstream of RAISOR]
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OPPORTUNITIES FOR IMPROVEMENT

Initial data break down of beam delivery performance & tuning hours spent on
each of the key tasks required for beam delivery
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TRANSPORT BEAM LINES FROM RAISOR - TO - TARGET
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TRANSPORT BEAM LINES FROM RAISOR - TO - TARGET
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/ Secondacy EiliaEesn ATLAS in-flight radioactive ion beams
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IMPROVE THE IN-FLIGHT BEAM QUALITY, TRANSMISSION, UP-TIME, AND DELIVERY TIMES
ENHANCED SCIENTIFIC POTENTIAL
= RETURN HOURS TO EXPERIMENTAL WORK =

= IMPROVED BEAM QUALITY, RELIABILITY, REPRODUCIBILITY =
= EXTEND THE REACH OF IN-FLIGHT BEAM PRODUCTION =
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DESCRIPTION OF THE OPTSB PROJECT
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OPTSB: OPTIMIZATION OF SECONDARY BEAMS

Implement an autonomous system for optimizing the transport & delivery of secondary beams
produced in-flight at ATLAS

Deliverables:
1. The optimization of the secondary beam profile onto an experimental target.

2. The optimization of the secondary beam purity and transport through the ATLAS transport
beam line, including the RF components (the RF Sweeper and re-bunching RF cavity).

Argonne &



OPTSB: OPTIMIZATION OF SECONDARY BEAMS

Optimization methods: Reinforcement Learning

1. Continuous control preferred

Magnet field settings, etc...

2. Discrete control is a possible option

Modify present field by fixed amount
3. Bayesian Optimization not

expected to be ideal solution

Each solution has multiple unknowns / variable numbers,

i.e. distributions, initial conditions, etc...

RL Algorithms
Model-Free RL Model-Based RL
Policy Optimization Q-Learning Learn the Model Given the Model
Policy Gradient! DQN ‘ World Models
DDPG
A2C / A3C ' - cs51 ‘ 12A
'{ TD3
PPO QR-DQN ‘ MBMF
SAC )
TRPO HER ‘ MBVE

AlphaZero ‘

OpenAl Gym Environment

0 Correctors
FCABON ¥

\ 7 e

Reinforcement Learning (RL) Agent

/ Action

/ Reward "\

aw
=Y
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PROJECT IMPLEMENTATION & RESULTS
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COMPLETED ALL HARDWARE INSTALLS

Full suite of diagnostics at the desired ‘target’ & ‘transport’ beam-line positions

Transport beam line elements Target beam line elements
RAISOR: achromatic in-flight beam ‘/\'
separator /\'
= e RF Sweoper
Si2 Qss > ool Ds Ds Qo0 & oo Sz . R4012 - - L —— L (S —
Ds | D [

steering element

dE-E Si detector

focusing element

dipole element

Particle identification

Particle identification & rates L I .
& rates Particle identification, P(?fitfllci:glgitldsg;fg:iitelgnt;et:qnf
beam&pi?astgsmng, positioning (beam vector)

& particle rates

+ Newly constructed & installed particle ID + beam-profile stations (x2)

+ target station coupled to newly constructed passive PS (tof) MCP station
+ Integrated available particle ID detector systems

+ Det. placements guided by TRACK simulations (& physical parameters)
+ All integrated into digital DAQ w/ real-time [seconds] event processing

+ Khushi Bhatt & Ivan Tolstukhin Argonne &




COMPLETED ALL HARDWARE INSTALLS

Full suite of diagnostics at the desired ‘target’ & ‘transport’ beam-line positions

Transport beam line elements Target beam line elements
RAISOR: achromatic in-flight beam
separator

steering element

focusing element

dipole element

dE (MeV) vs E (MeV) B 2 T
21Nedr | 3 | 3 1 |
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+ Khushi Bhatt & Ivan Tolstukhin — - - o Argonne &




IMPROVED UPON EFFICIENCY OF DATA-FLOW

Explored reliability, boundary checks, & timing improvements

Ew‘ ,“o.‘ s
Beam-line data collection & handling E"‘" e @"‘fmw TN PSR
4000 "fy % = Total rate
+100 - 500 Hz, 30 channels, 10 - 12 reduction/manipulation processes - e
+ Benchmarked systems offline with signal emulator(s) ) _
Total Energy [channels] .
+ Developed / Commissioned custom readout and visualization Beam “_ne
daq software in collaboration with FSU daq [T.L. Tang et al., observations
NIMA 2024] DataBase [currents, rates,
. . . . influxDB XY]
+Developed 3-D particle-by-particle ray-tracing of the online data at the [ ]
target station
+ Total & individual rates [ ~1 sec period] + Multi positional info [ ~1-2 sec] + Event-by-event vector reconstruction [ <3]
+ Rate dependence on uncertainty (FHWM, + Similar rate dependence for uncertainties
Gauss. Fit for positional info) / stats
o ) v i)
i [2ness |
\ e —
N 3

+ Khushi Bhatt & lvan Tolstukhin - Argonne &
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IMPROVING EFFICIENCY OF DATA-FLOW

Explored reliability, boundary checks, & timing improvements

Energy Lows [channels]
§
»

i 3 8
a8
‘zﬁ
A

% Beam line
observations

A high-performance time series
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OPERATIONAL SYSTEM FOR ONLINE DATA COLLECTION

Examples of data collected from the target optimization detector systems

Target beam line elements
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DATA COLLECTION & PROCESSING

Real-time determination of particle trajectories

, Join the two detectors in time to
E create event-by-event ion trajecto
®8=  Distance between detectors y J Y
06 vectors
5 ~2meters —
04— -
02"
0
-0.2[
—0.4;
-0.61
08—
L s
0.6
05 L
- 04— } N
0.3:— L C
8 02 r o
~ 01° N =
B x 8
8- 01— ,_ o
> [ >

= 1 1 1 1 L
Sl o Ll I (T N PR o
%5 o4 03 02z o1 o 1 02 03 04 05 1708 06 04 202 TR 02 04 06 08

X position 1 X position 2

e e e e e e by e 1w |y
0 20 40 60 80 100

i1 tional L.
ment of

PP s oxranruens o tgonme Natona Labaetoy o +used in first optimization with degraded primary beam
(2 ENERGY U erzpimenelEreroy sboroey P 9 P ry Argon ned

+randomized data collection for in-flight beam [2'F]

ATLAS




FIRST ONLINE RESULTS & FUTURE DIRECTIONS
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ONLINE TARGET OPTIMIZATION APPROACH

Demonstrated success of RL-based optimization for transmission & focussing

Machine Learning: Science and Technology

Towards automatic setup of 18 MeV electron

Framework constructed is parallel to that used at CERN / AWAKE beamline using machine learning

- Analogous optimization problem & similar action/state scope

- Proven results with RL-based optimization (TD3) [ 3 -5 actions] To cite this article: Francesco Maria Velott et al 2023 Mach. Learn.: Sci. Technol. 4 025016
- TD3 - updated actor-critic method

- Better performance through an iterative process?

- Focus + transmission in parallel or series?

18 MeV e- beam
eV e eam

=

State:
»

P \) =X | ,
Two main goals could be incorporated into reward values \:”‘"‘*““”" K /
ro = —1[reas+1i (1 — ay)] - Actions

3x triplet + 2x solenoid settings

Beam transmission / intensity Tal'get transverse emittance Figure 1. AWAKE beamline showing location of the matching devices (actions) and the observation BTV.
1 . 1 0.2 0.2 0
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CONSTRAINTS FROM HISTORICAL TUNE DATA & SIMULATION
Characterization of hardware to inform simulations & RL parameters

Target beam line elements

Quadrupole 1 vs. Quadrupole 2

Historical Data: Distributions based on historical tune data
- Contributes insight into action limits, > [normalized to known beam rigidity] . o i

® qivs.q3

16 o s

correlations and hyper-parameter tuning
[10 sets on target line, 25 sets on 14

transport line] s
1 > ‘ : '
0.5

06

Completed magnetic field scans with
Hall probe for each element

uad

Developed inputs for 12 independent
data sets [A, q, E, emittance
parameters]

Norm. field / <Norm. field>

04

dipole quadl quad2 quad3 04 06 08 1 12 14 16
Basic comparisons between limited data quad#
collected to simulation show qualitative
agreement

AAAAAAAAAAAAAAAAAA




FIRST ONLINE OPTIMIZATION TESTS

Limited-scope execution of TD3 ML Optimization was promising

Optimization of the downstream quadrupole triplet (+ two steering magnets)
onto the final target position
22Ne'%* primary beam after going through a Be foil

-0.2

R Value Achieved by Operations Team
Reward value= 5 R
transmission only £ -0 - N .
-0.8 .
1 - h 4 o e ) o
0 5 10 15
Iteration
RANDOM SAMPLING / TRAINING MODEL Predictions
[iteration 1 — 10] [iterations 11 — 15]

About 10 — 15 seconds per iteration: < 5 mins to achieve operator results

- Data collected from faraday cups

- Quad fields constrained to limited range ~10-15% beyond starting values
based on historical data

- Sample weighting will be implemented based on historical data for future runs

Argonne &



UPDATED BUDGET & MILESTONES
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MAJOR PROJECT MILESTONES, COMPLETION %, & COSTING

JAN23 MAR23 MAY23 JUNE23 AUG23 SEZZZ:; ) FEB24 MAY24 DEC24

CY2024

CY;

Installation of all
“Target” hardware

Heavy running of the
in-flight physics
program through fall

Scheduled/planned beam

time(s) for online ML Cancelled due to Complete requested

training & beam line ATLAS Issues / beam time: Final
Development beam hardware commissioning priorities commissioning of
time to commission beam line hardware;
target hardware Cancelled due to un- Commissioned full target further

expected power outage o systems & first online ML demonstration of ML
Only 4/36 hrs of beam 0 Completion of final training at the ‘target training at the
delivered hardware install & “target” with in-

ATLAS Startup 1/2 of requested beam time ~ flight beam

by ATLAS PAC

OptSB Time Line Approximate %
W design W procure W fabrication M operation completed

o 100%
‘sub-system o
2. Onine targot sub-systom data [ 100% _ FY22 ($k) FY23 ($k) Totals ($k)

|
3. Online target optimization
o sysem | . 959
4. Offine beam-ine optimization % a) Funds allocated $375 $375 $750
; e —— .
5O covecton [ | | b) Actual costs to
SO U ot $375 $335 $710
[ I

45%
s . , + 35%

7. Complete OptSB system

°

Quarter
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OPTSB PROJECT SUMMARY

= Target & beam line beam diagnostic hardware is fully functional

= A complete online data processing loop has been demonstrated including data
collection, optimization processing, & accelerator element feedback / adjustment

= First rudimentary online beam optimization achieved for target transmission w/
TD3 ML numerical method

= Full beam-line transport application is planned but requires additional beam
times

= Solutions are still being explored for full-transport optimization schemes, e.g.,
adoption of Bayesian optimization schemes

= Progress has built nicely into project extension of beam optimization &
identification at the RAISOR focal plane (discussed in an earlier talk)

U.S. DEPARTMENT OF _ Argonne National Laboratory is a
7 ENERGY U.S. Department of Energy laboratory
> mana Arg LLC
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