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LEGEND Collaboration

Mission: The collaboration aims to develop a phased, Ge-76 based double-beta decay
experimental program with discovery potential at a half-life beyond 1028 years, using existing
resources as appropriate to expedite physics results.
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Outline

e Neutrinoless Double-Beta Decay in 7°Ge
e ML-Enhanced Analysis Tools
— Semi-Autonomous Data Cleaning (E. Leon)

e ML-Assisted Simulations

— Electronics Pulse Shape Emulation (K. Bhimani)
— Pulse Shape Emulation with IQN (S. Giri)
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Why Neutrinoless Double Beta Decay?

e The discovery of OvBB decay would dramatically revise our
foundational understanding of physics and the cosmos

— Lepton number is not conserved
— The neutrino is a fundamental Majorana particle

— There is a potential path for understanding the matter — antimatter

asymmetry in the cosmos, through leptogenesis
— There is a new mechanism demonstrated for the

generation of mass

 The search for Ov@p decay is one of the
most compelling and exciting challenges

in all of contemporary physics

e ’5Ge-based searches have proven very
successful in searching for this ultra-rare
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The OvB Signal
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Searching at ultra-long half-lives, 10%7-10%8 years:
30 discovery could be based on just 3 to 4
events, requiring ultra-low backgrounds
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Event topology:

Bs don’t travel far in HPGe

BB decays are “single-site” events

y backgrounds are often “multi-site”
a and B backgrounds concentrated on
detector surfaces
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From the Current Generation to the Ton Scale

MID Final Ov@B results: T°P# > 8.3 x1025

1/2

)

PRL 130, 062501 (2023
 ae? e,

yrs

GERDA Final OvBB results: T"YPF > 1.8 x1026yrs

1/2

PRL 125, 252502 (2020)

LEGEND-200: Taking data

First OvBp result released

LEGEND-1000: Conceptual design
development continuing

arXiv: 2107.11462
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Background Rejection in Point Contact Detectors

OvBp signal candidate (single-site)
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External a, B, and
y backgrounds all
create distinctive
pulse shapes,
allowing for highly
efficient BB decay
event selection
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Energy and Pulse Shape Parameter Calibration
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LEGEND-200 Design

Water tank / p-Veto

HPGe readout electronics

Liquid Argon instrumentation:
inner & outer fiber barrels with
silicon photomultiplier (SiPM)
readout at top & bottom

Larger mass (inverted coaxial)
HPGe detectors with up to 4 kg

Source funnels for
228Th calibration sources

HPGe Detector array & LAr Instrumentation

. T based on MJD Low Mass Front-End " "* ...
: and GERDA charge sensitive amplifier (CC4)
i Detector mount: underground copper,
optically active PEN plates & radiopure PEI s,
9 ‘~‘ :
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LEGEND-200 Analysis Strategy

Probability
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Implications for Al/ML

e Granular Detectors + Low Backgrounds
— Low rate of physics events (< 1 Hz per detector)
— Noise-induced events can make up a large fraction of triggered waveforms

— Allows time-intensive analysis of final waveforms, but algorithms should also run on much
larger calibration data sets to confirm signal acceptance rate and stability

e “Traditional” pulse-shape parameters perform quite well for background rejection

— Build network structures that improve on existing pulse-shape parameters or leverage signal
physics knowledge

— Use Al/ML for tasks other than signal/background event classification

e To maximize sensitivity, need to design for high-efficiency LAr and PSD rejection and
model backgrounds in multiple dimensions

e Discovery could be claimed based on as few as 3 events
— Analysis interpretability is key
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Project Goals and Team

e Qverall goal: leverage interpretable machine learning
to improve analysis and simulations in the LEGEND
program

— Accelerate analysis development by automating “nuisance
tasks” like multi-step parameter calibration

— Enable future multi-dimensional likelihood analysis

e 4 projects within these goals:
— Semi-autonomous Data Cleaning for LEGEND-200
— Electronics Response Emulation and Removal for LEGEND

— Pulse Shape Emulation for Multi-Dimensional Background
Modeling

— Interpretable Boosted Decision Tree for LEGEND

Ji

J. Gruszko, Pl E. Leon, PhD Student,
Graduated Nov. 2024

K. Bhimani, S. Giri, PhD M. Mayhew,
PhD Student Student undergraduate

Past participants: Niah O’briant,
Natalie Grey (UNC undergrads)

Externally-funded collaborators:
William Quinn (UCL postdoc)
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Data Cleaning

e Process of tagging signals captured by HPGe detectors

e Goal: accurately distinguish physics (signal-like and background-like)
from anomalous waveforms
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Al-Powered Data Cleaning

1. Extract pulse shape information
from waveforms

2. Group waveforms based on their
similarity with a clustering
algorithm + human supervision

3. Expand clustering with a

classifier
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Semi-Autonomous Data Cleaning: AP-SVM

Extract relevant pulse shape
information using wavelet
decomposition, normalize
waveforms

Use unsupervised Affinity
Propagation to cluster training set
waveforms and produce exemplars

User studies exemplars and
provides labels, used to train
Support Vector Machine (SVM)
that draws boundaries between
categories

All other data is labeled using SVM
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Data Cleaning for LEGEND-200

N :
o~ Pygama primary software stack: ®\ Juleana secondary
e AP-SVM model used to cross-validate @Juleana software stack:

traditional bit cuts » AP-SVM model used as primary data-

* |dentified cross-talk population that cleaning method, supplemented by
traditional cuts were missing simple traditional checks when needed
28Tl full escape peak (FEP) survival Per-detector and per-partition
fractions re-scaled to Qg efficiency in Juleana
] g\?M Maximum
pygama
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Full Chain Test (FCT) Deployment

e AP-SVM also deployed for characterization and

test-stand measurements HE H
Crate Crate
e Conducted salting studies to study efficiency as rlonee rienee
. . . . I_’
a function of energy: promising approach for oo
low-energy data cleaning Source
Tube
LAr
Cryostat
1004 ® CC4 Board ’
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Category 1 Ge —— IR Shield
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Adapting AP-SVM for SiPM Analysis

e Background rejection in LEGEND leverages LAr instrumentation coincidences

e Untagged cross-talk between Ge and SiPM channels prevents us from further
lowering coincident light threshold

Sample True Coincidence

Sample Crosstalk

tttttttt

Time and Amplitude Analysis Time and Amplitude Analysis

0.8

0.6 -

0.4

0.2

0.0 T T T T
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Tagging Cross-Talk with AP-SVM

e SiPM cross-talk depends on Ge waveform current, not amplitude/energy: leads to large

variety in cross-talk signal shape and makes this difficult to tag
e Cross-talk waveform shape also varies between SiPM channels

e AP-SVM may be easier to implement and more accurate than traditional data cleaning tag

Cross-talk with Fast-Rise Alpha Events
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AP-SVM for Silicon Photomultipliers (SiPMs)

Pre-processing steps were adapted for SiPM

signals:

* Use current-derivative trigger to center
and window signals

* Multiple signals can be pulled from a
single waveform trace

* Amplitudes normalized, but no wavelet
filtering applied

Training data salted with known cross-talk

events, based on Ge coincidences

Initial results look
promising!
Work is underway.

Work by undergraduate
Mara Mayhew

Crosstalk

Noise Trigger
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Data Cleaning: Status and Next Steps

e AP-SVM data cleaning is in place for upcoming LEGEND-200 data taking

— Primary data cleaning stack is being modified to rely on AP-SVM more heavily

e AP-SVM for SiPMs is showing promise as a new cross-talk tagging method

e Publications:
— Accepted to NeurlPS 2024 Machine Learning in Physical Sciences Workshop
— Full-length manuscript submitted to MLST, arXiv: 2410.14701

Next steps:
e Run SiPM version on larger data set, use results to inform cross-talk analysis

 Implement AP-SVM in near-real-time monitoring software:
— Allow shifters to identify problems during commissioning
— Make “human labeling” step a routine shifter task
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-Assisted Simulations

Input (16, 1, 1800) Output (16, 1, 1800)

Embedding + Conv1d (16, 28, 1800)

+PE Map (16, 28, 1800) Upsample (16, 28, 18C
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+PE Map (16, 56, 900)
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Background Modeling for LEGEND

Currently from Geant4 hits
and simulated detector
fields, tuned to match
calibration data at Qg

A

Ge Detector

Multi-site

Material Assays Coincidence

Information Used for L-200 Rejection
background Heuristic
model fitting

Background Background
After Ge Anti- After Full Anti-
Coincidence Veto Coincidence Veto

Background
Before Cuts

Background
After All Cuts

Active Shield I Used for L-1000

Experimental Coincidence a and B Rejection design optimization
Geometry Information from Probability

Optical Simulations

Currently from data,
subject to low statistics
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Improving Background Modeling with Pulse Shape Simulations

* Goal: replace heuristics with accurate pulse shape simulations B
. . Passivation Layer|
and/or emulators based on pulse shape simulations — '
* Motivation: . Nl
— Reduce background model fit degeneracies by using LAr and PSD | |

information

— Provide a reliable “after cuts” background model for the full
spectrum: needed for BSM studies beyond Ov[33

— Provide reliable multi-dimensional PDFs for each background source,
allowing for fully multi-dimensional analysis

e Bonus:

1.00x10° |

— Allows development of improved PSD classifiers (including ML)

— Needed for studies of PSD systematic uncertainties 7.50x10° |

5.00x10° [

Charge / e

e Challenges:
— Imperfect knowledge of electronics response —_—
— Scaling PSS to required statistics

0 E
0 250 500 750 1000
Time / ns
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Electronics Emulation: Motivation

e Pulse-shape simulations based on detector
response are quite advanced, but are not being
used regularly for background modeling due to
difficulties in modeling electronics chain response

* Fitting-based approach for MJD proved unfeasible:

— Requires highly-degenerate detector-dependent 12-
parameter fit

— Instability in electronics causes changes over time,
requiring repeated fits

* Emulating electronics would allow for:
* Improved modeling of PSD performance and systematics
* Improved L1000 detector and ASIC design
» Position reconstruction inside the detectors

* True electronics deconvolution would improve
performance of PSD

LEGEND 200 readout electronics (idealized)
10m in LAr and GAr

v

Pulser
input

—

Suprasil
board
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Electronics Emulation: Network Design

—— Simulated Pulse

| —— CPU-Net Output

DSource

TSource

Time Sample [ns]

—— Simulated Pulse

Time Sample (ns]

|
) —— CPU-Net Output

e Difficulty lies in training: we have
ensembles of data waveforms and
simulated waveforms, but not the 1-to-1
matching between them

* We want the network to convert each
input into the correct counterpart, not
just some member of the ensemble

e Cycle-GAN provides a solution

Time Sample [ns]

® ® Domain Generated Pulse
O O ATN Translated Pulse

A\\ y Simulated Pulse Translation Path

A\ y Detector Pulse Translation Path

AT,

CycleGAN loss:

* GAN loss: 2 discriminators, 2 generators/translators, combined

into single loss term

* |dentity loss: transformers should perform identity
transformation for target domain waveforms

* Cycle loss: after the full cycle, each event should return to itself
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Electronics Emulation: Network Design

e Generator: 1D U-Net, with added positional encoding Generators:
inspired by Transformer model et (15 1, 1800) Oup (13 1 1600)
Embedding + Conv1d (16, 28, 1800)
e Discriminator: LSTM with Attention Mechanism, ﬁ%ﬁ
originally designed as LEGEND Baseline Model 7P tep (16,25, 1500 RSBRSRASSc

+PE Map (16, 56, 900)

e Results combined into GAN loss term ﬁfﬁ@ %@
Upsample (16, 56, 900)

* Network trained with 2615 keV FEP data & simple

waveform sims, with no electronics effect applied ﬁ@m 12450
+PE Map (16, 112, 450)
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© 0.6
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S0z weights applied to waveform
00 sections
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Results

Sim-to-Data:
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Results

Traditional PSD parameter for multi-site ID:

2000
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# of Events
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* Technical paper published as part of the NeurlPS 2022 Workshop on Machine
Learning in the Physical Sciences: “Ad-hoc Pulse Shape Simulation using Cyclic
Positional U-Net” https://ml4physicalsciences.github.io/2022/

SEP events on FEP trained data
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Full manuscript in prep, expect publication early in 2025

Waveform drift time:
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QN for Pulse Shape Emulation

e Motivation: PSS is computationally expensive; ultimately
what we most care about is PSD parameter vs. Energy L(fy)=
distribution, not full waveform information

e Implicit Quantile Network-based pulse shape emulation

Multidimensional Modeling: IQNs learn to predict quantile
functions across multiple dimensions, offering a more
detailed probabilistic interpretation of data.

Versatility: Suitable for complex data types, including pulse
shape observables (e.g., A/E in LEGEND).

Quantile Estimation: Instead of predicting a single value,
IQNs provide predictions for various quantiles, improving
robustness and model interpretability.

Non-parametric: No assumption of data distribution,
making IQNs flexible for diverse data sets.

Based on: Submission

Implicit Quantile Networks for Emulation in Jet Physics

B. Kronheim!*, A. Al Kadhim?, M. P. Kuchera34, H. B. Prosper?, R. Ramanujan?

T(y — f(7,%;0))
(1—=7)(f(r,z;0) —y)

Emeos' A/E

y > f(7,2;6)
y < f(r,;0)
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Training and Initial Results

Initial results:  Energy

Network Inputs:
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Deliverables and Schedule

Project Q4 2023 Q1 2024 Q2 2024 Q3 2024
Milestones

Data
Cleaning

Electronics
Response

Emulator

effort
availability

In Progress
Not Yet Started

Q4 2024

Q1 2025

Q22025

Q3 2025

Q4 2025
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Budget

Y1: Dec 12023-Nov 30 | Y2: Dec 12024 - Nov | Totals (Sk)
2024 30 2025

Funds allocated
Actual costs to date

$170,000
$156,330

$210,000
0

$380,000
$156,330

Julieta Gruszko | ML for Ge OvBB | Al/ML Pl Echange 2024

w
v



