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FOA requested topic:

• Address the challenges of autonomous control and experimentation

• Efficiency of operation of accelerators and scientific instruments
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Desired result: higher proton polarization
• What high-impact operational challenge can be addressed by MI/AI? 
è Polarized protons.

• From the source to high energy RHIC experiments, 20% polarization 
is lost.

• Polarized luminosity for longitudinal collisions scales with P4, i.e., a 
factor of 2 reduction!

• The proton polarization chain depends on a hose of delicate 
accelerator settings form Linac to the Booster, the AGS, and the RHIC 
ramp.

• Even 5% more polarization would be a significant achievement.
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Outline
• Objective of proposed work: higher proton polarization in RHIC and the EIC.
• Polarized-proton acceleration chain.
• Potential avenues toward higher proton polarization.
• (1) Emittance reduction
• (2) More accurate timing of timed elements
• (3) Reduction of resonance driving terms
• Gaussian Process (GP) Bayesian Optimization (BO) and physics informed 

learning.
• When is ML/AI better for accelerator operations than other feedbacks and 

optimizers?
• Progress report
• Plans
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The polarized proton accelerator chain
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RHIC Polarized Beam Complex
Max tot. 
Energy
[GeV]

Pol. At Max 
Energy [%]

Polarimeter

Source+Linac 1.1 82-84

Booster 2.5 ~80-84

AGS 23.8 67-70 p-Carbon

RHIC 255 55-60 Jet, full store avg*

Relative Ramp 
Polarization Loss
 (Run 17, full run avg)

AGS 17 % 
RHIC 8 %

* Includes both ramp loss and store decay
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Topics that can improve polarization
• (1) Emittance reduction

• (2) More accurate timing of tune jumps

• (3) Reduction of resonance driving terms
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Optimizers for different applications

Courtesy Auralee Edelen 
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Characteristics of involved optimizations

1. Optimal parameter settings are hard to find, and the optimum is 
difficult to maintain.

2. The data to optimize on has significant uncertainties.
3. Models of the accelerator exist.
4. A history of much data is available and can be stored.

Is this type of problem suitable for Machine Learning?
Why would ML be better suited than other optimizers and feedbacks?
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Gaussian Process
• GP model built with scikit-learn library

• A probability distribution over possible functions 
that fit a set of points

• Mean function + Covariance function

• Kernel: covariance function 𝑘(𝑥!, 𝑥") of the input variables

• Covariance matrix K = 𝑘 𝑋, 𝑋 =
𝑘(𝑥#, 𝑥#) ⋯ 𝑘(𝑥#, 𝑥$)

⋮ ⋱ ⋮
𝑘(𝑥$, 𝑥#) ⋯ 𝑘(𝑥$, 𝑥$)

• At a sample point 𝑥!, Gaussian process returns mean 𝜇 𝑥!|𝑋 = 𝑚 𝑥! +
𝑘 𝑥!, 𝑋 𝐾%# 𝑓(𝑋) − 𝑚 𝑋  and variance 𝜎& 𝑥!|𝑋 = 𝑘 𝑥!, 𝑥! − 𝑘(𝑥!, 𝑋)𝐾%#𝑘(𝑋, 𝑥!)
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Merit of physics-informed optimization

Courtesy
Auralee Edelen 
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Advantages of Bayesian Optimization
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Why is Bayesian Optimization suitable?
1. The data to optimize on has significant uncertainties
è Derivatives of measured functions are not required.
2. Models of the accelerator exist
è the expected functional form can be included in the function search 

(Physics-informed learning)
3. A history of much data is available and can be stored
è All past data are included to model the function to be optimized.

Note: Reinforcement Learning (RL) can be promising because (a) accelerators 
have many state variables beyond the optimization objectives, (b) accurate 
models can reduce the require measurement points of data hungry RL.
è Ongoing analysis of BO vs. RL for accelerator control, which will be part of 
our follow-up proposal.
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Topics that can improve polarization
• (1) Emittance reduction

• (2) More accurate timing of tune jumps

• (3) Reduction of resonance driving terms
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Emittance reduction è less depolarization

• Optimized Linac to Booster transfer

• Optimized Booster to AGS transfer

• Optics and orbit correction in Booster and AGS

• Beam-based model calibration from orbit responses in Booster and 
AGS.

• Bunch splitting in the Booster for space charge reduction and bunch 
re-coalescing at AGS top energy.
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Polarized collider performance

17

Collider luminosity, ℒ 

ℒ ∝
𝑁!

𝜀
N = intensity/ bunch
𝜀 = tran. emittance

Polarized collider figure of merit 
(for polarization P): 

ℒ	𝑃4
ℒ	𝑃5

FoM = 

Since both emittance and 
polarization degrade with intensity 
figure of merit decreases rapidly

FoM dependence on intensity 
closer to linear in N than 
quadratic.

Pol vs Intensity

Emittance vs Intensity

AGS extraction

Polarized beam collider FOM

transverse spin

longitudinal spin

Impact of intensity increase on FoM 
given emittance and polarization 
dependence at AGS extraction
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AGS Performance
Highest AGS performance is difficult to 
achieve and maintain

Value in just holding a known optimum

A combination of maintaining emittances 
and direct polarization interventions

(Not a fit)
Known good performance line

Good performance 
achievable, but hard to 
keep

AGS Polarization vs intensity for RHIC fills (Run 24)
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Booster injection/early acceleration process sets maximum 
beam brightness for rest of acceleration though RHIC

• Many ”knobs”
• Linac to Booster trajectory/optics matching
• Optimization of time on foil (Linac pulse length vs 

height)
• Linac RF phases affect capture and acceleration 

efficiencies
• Booster RF capture rate affects longitudinal emittance 

(and transverse, via space charge)
• Booster orbit and optics affect foil scattering, matching 

and intensity transmission.
• Betatron ‘stop band’ correctors for intensity, emittance 

preservation.
• Difficult instrumentation

• WCM, BPMs don’t work until after capture
• No transverse profile monitor in Booster

• Scraping efficiency as proxy
• Measurable in the extraction line via multiwire

• Difficult model
• Linac to Booster longitudinal effects
• Space charge
• Stripping foil

Space charge tune spreads
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Booter injection

From Linac

126° 
bend

To Booster

• Booster injection process sets maximum beam 
brightness for rest of acceleration through RHIC

• Known emittance effect on polarization loss

• Intentional horizontal and vertical scraping reduce 
emittance to RHIC requirements

• Goal: minimize emittance / maximize beam 
intensity after scraping

• Controls: Linac to Booster (LtB) transfer line optics

• Method: Bayesian optimization (BO)

scrape
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Motivation: Digital twin at CBETA

• Had success in building digital-twins for 
CBETA: combine custom version of 
Bmad/Tao with EPICS

• CBETA-V: measure beam trajectories and 
compare to the digital twin in real time on 
control-system screens

• Neural network can be trained to predict 
orbit response using Bmad simulation data 

• NN model can predict beam behavior due 
to both linear (correctors) and non-linear 
(cavity) relationships
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Beam in the Linac to Booster Transfer line
• To model injection into the booster, the beam’s 

phase space distribution in the LtB line needs to 
be known.

• While a NN can be trained to determine the 
beam’s phase space distribution from 
tomography, the current diagnostics does not 
permit to resolve x-y coupling.

• Polarized proton beam has such coupling 
because it is created in a solenoid field.

• X and Y multi wires are not sufficient input for 4-
D phase space tomography

è We will use skew quads in the booster and tilted 
multi wire detectors to resolve x-y coupling.

è Then our BO can be extended by a physics 
informed model.

scrape

Simulated (left) and measured (right) quadrupole scan 
results for horizontal quad QF8 observed at two multi-
wires (MW099, MW107) in the LtB line. 

è The x/y projected emittances change along the 
transfer line, i.e., coupling needs to be considered.
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Booster injection: 2 correctors + 2 quadrupoles
• Controls: Power supply currents of two correctors 

and two quadrupoles at the end of the LtB line

• Beam size decrease in both planes in the BtA line 
in correspondence with intensity increase

Bayesian optimization of the Booster injection process.

Top: power supply currents of two correctors (tv95, 
th115) and two quadrupoles (qf12, qd13) in the LtB line.

Middle: beam intensity after Booster injection, scaping, 
and acceleration.

Bottom: Beam size measurements in the BtA line 
during Bayesian optimization.
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BtA Transfer Line Structure in Bmad
• Lattice can be divided into branches connected with 

forks to simulate connection to a transfer line

• Require documented coordinates for elements to 
construct correct geometry

• Beam parameters from the end of one branch is 
automatically inherited by the start of downstream 
branch → continuous tracking

• BtA universe with three branches
• 1st branch: Booster ring with extraction bumps
• 2nd branch: Extraction line from F2 to F6 septum 

with F3 kicker on

• 3rd branch: BtA transfer line

mailto:Georg.Hoffstaetter@cornell.edu


Georg.Hoffstaetter@cornell.edu                              2024 AI/ML PI Exchange Meeting, DOE-NP  December 4, 2024  25

BtA modeling and data comparison
• Bmad tracking leads to horizontal dispersion matching measurements

• Beam size values from bunch tracking show agreements for upstream multi-wire 
measurements, disagreement downstream needs further investigation 
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Bayesian Optimized Injection into the AGS
Algorithm efficiently found settings that were different, but at least as good as the 
previously optimized ones, automatically maintain the AGS injection at optimal 
performance without human intervention.

è Optimization of current   while   observing the brightness.
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AGS, Polarization and Snakes

27

• Proton energy range 2.5 GeV -> 23 GeV
• Polarization preserved using

• helical dipole snakes
• + horizontal tune jump
• Resonance correction in development (would replace tune jump)

AGS Warm snake

AGS Cold snake

AGS Optics (low energy)

No snakes Snakes +compensation

• Requires “near integer” tune
• Orbit, optics unusually sensitive 

to errors

• Helical dipoles are complicated 
magnets

• Large optical effects at low 
energy

• Many related magnetic elements 
for compensation orbit/optics

• The complex fields and lattice + high 
tune requirements are a challenge to 
modeling (Eiad’s talk)
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AGS Siberian Snakes modeling

• AGS Siberian snake field 
maps violates symplecticity, 
especially at AGS injection 
energy 

• Symplectic tracking (green) is 
stable for over 10,000 turns

Horizontal Vertical
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Response Error model for the ORM
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Orbit response data in 
AGS Booster
• Orbit response data can be used to find and 

quantify unknown parameters (e.g., power supply 
scaling factors, magnet misalignment etc.) in real 
accelerators

• Good agreements between AGS Booster data and 
Bmad model are reached, despite some faulty 
BPMs (i.e., PUEHC8)

• Small discrepancies (within 1 mm) beyond error 
bars is being investigated

• chi-squared/DF = 1.4 – physics reasons for 
discrepancy are being sought by Uncertainty 
Quantification.

è The main power supply transfer functions are not 
an explanation. Error sources are being analyzed.
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Space-charge emittance increase 

è Splitting bunches before AGS 
acceleration can reduce the emittance.
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Bunch splitting in Booster / merging in AGS

Splitting in the booster and coalescing after AGS accelerator 
reduces space charge and emittance growth è more polarization
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Reinforcement Learning Tuning
test - varying 6 voltage points for each RF system

33

Initial

1st step

5th step

Original

Bunch traces Last traceRF voltages Goal: minimize the longitudinal emittance 
after bunch merging
• RF amplitudes as function of time 

have been optimized in experiments.

• Automatic readout of longitudinal 
emittance not yet available, therefore 
experimental setup uses simulated 
bunch lengths as reward.

• Plan: check whether Reinforcement 
Learning has advantages over BO.

• Plan: Include also RF phases as 
actors 

• Determine useful state variables
• measurable
• related to the reward
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Timing of tune jumps
The G-gamma meter and accurate energy vs. time

(1) Measure the energy by orbit + revolution frequency measurement

(2) Measure of energy by field + revolution frequency measurement

(3) Measure energy by spin flip at every integer spin tune

Combined optimization

è better timing

è higher polarization
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Improved energy timing
Parameters to vary:

Time profile of the time-jump quadrupoles

Observables to optimize:

Revolution frequency (1.E-6)

Radial offset from BPM readings (20mu average)

Main dipole fields Hall-probe at injection (0.1%) + integrating coil (2%)

E(t) by measure f(t), x(t), B(t)
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Measuring Energy (Ɣ)

From field
In RED:
Measured quantities
f        = RF frequency
dR     = radial shift from ’zero’
Bclock = Field reported by Gauss clock

In BLUE:
Machine parameters (not known to sufficient 
precision)
Ɣtr     = transition gamma
R0     = true central radius of AGS
ρ0 = avg bend radius of AGS main magnet
Cscal = Gauss clock calibration (gauss/tick)
Binj  = Dipole field at injection
Bdfactor = [NOT IN FORMULA] Gauss 
measurement sensitive to dB/dt (B-dot), not well 
understood 

Calibration of the Ggamma meter consists of measuring Gg(B) and 
Gg(f) at the same times in the cycle and fitting parameters until 
they agree to sufficient precision

Dedicated calibration ~2 weeks

Essentially an inverse problem with data assimilation,  good 
candidate for uncertainty quantification (how well can we determine 
these parameters, which is responsible for most variation?

From RF frequency

AgsGgammaCal application
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Polarization is preserved in the AGS with two 
partial helical dipole snakes (10% and 6% 
rotation)

Provides spin tune ‘gap’ where imperfection 
and vertical intrinsic resonance condition are 
never met

• νs ≠ N  (full spin flips)
• νs ≠ N +/- Qy

Horizontal resonance condition still met
• νs = N +/- Qx

• Horizontal resonance are weak, but 
many (82 crossings)

• Currently handled with fast tune 
jump

ΔQx = 0.04, 100 μs 

37

Spin 
tune gap

Hor resonance 
crossings

Tune
jump

(pause tune 
jump
near transition)

Reduction of AGS resonance driving terms

Partial snakes drive horizontal depolarizing resonances
è Compensate by other coupling elements, e.g., skew quads
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Horizontal Resonance Amplitudes in AGS

• Two snakes, separated by 1/3 circumference
• Modulated resonance amplitude highest 

near Gɣ = 3N (when snakes add 
constructively)

• Horizontal resonances occur 
every 4-5 ms at the standard AGS 
acceleration rate

ML/AI:
Physics informed 
Learning of the optimal
skew quad strength +
optimal timing.

Reduction of AGS resonance driving terms
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AGS Spin Resonance Correction Skew Quadrupoles
• A set of 15 pulsed skew quadrupoles, each with an individual 

power supply
• Designed to excite coupling resonance to compensate the 82 

depolarizing resonances associated with horizontal betatron 
motion in the AGS partial snakes

• 15 knobs, 82 different resonances
• Expected effect is 10-15% gain in polarization
• A +/-2% measurement takes 5-10 minutes

• Run 24: Observation of polarization gain factor (+10%) during 
acceleration (similar to existing tune jump), with ~half the pulses 
enabled)

• Further improvements (enabling more pulses, +5-10% gain):
• Addressing model inaccuracies at low energy 
• Iteration on orbit centering
• Possible optimizations based on ML methods

• No solid plan for how to approach this

Skew quad current pulses

Correction amplitude scan

Zero correction

Skew quad current pulses

Partial correction
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AGS skew quads
• Partial snakes in the AGS helps avoiding vertical 

resonances
• Goal: compensate 82 horizontal resonances with 15 

pulsed skew quadrupoles
• Satisfactory results for above-transition resonances
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SciBmad a ML-oriented Toolkits (Libraries)

Advantages the toolkit:
Fully differentiable (reverse and forward)
è excellent for Neural Network optimizations
è Excellent for Bayesian optimization with slope information
• Cuts down on the time needed to develop programs.
• Cuts down on programming errors (via module reuse).
• Provides a simple mechanism for lattice function calculations from within control 

system programs.
• Standardizes sharing of lattice information between programs. 
• Increased safety: Modular code provides a firewall. For example, a buggy module 

introduced into the toolkit will not affect programs that do not use it.

Toolkit Dynamic Aperture Program

Control System Programs

Lattice Design Program

Etc.

IBS Simulation Programs
This project is
• funded by DOE-HEP
• has a growing list of collaborators
• has a weekly wise people meetings
•                     è is looking for collaborators

mailto:Georg.Hoffstaetter@cornell.edu


Georg.Hoffstaetter@cornell.edu                              2024 AI/ML PI Exchange Meeting, DOE-NP  December 4, 2024  42

Summary 
• DOE-NP funded project for the enhancement of proton polarization using 

ML/AI. Goal: 5%.

•  Several accelerator optimizations can impact polarization. 

•  These topics are of the type suitable for physics- informed Bayesian 
Optimization and we are evaluating suitability for Reinforcement Learning.

•  Excellent team has formed, items being addressed:
• Emittance reduction (orbit, optics, bunch splitting) already works in the Booster

• Improved model building and programing of digital twins of all parts

• Reduction of resonance driving terms already works above transition energy

• Accelerator studies show the utility of ML for the pre-accelerator chain.
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BNL: Kevin Brown, Weinin Dai, Bhawin Dhital, Yuan Gao, Levente Hajdu, Kiel Hock, 
Bohong Huang, Natalie Isenberg, Nguyen Linh, Chuyu Liu, Vincent Schoefer, Nathan 
Urban

Cornell: Georg Hoffstaetter de Torquat (also BNL), Lucy Lin, Eiad Hamwi, David Sagan, 
Matt Signorelli

SLAC: Auralee Edelen

JLAB: Malachi Schram, Aarmen Kasparian

RPI: Yinan Wang

Radiasoft: Nathan Cook, Jon Edelen, Chris Hall

Dominant Participants
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Thank you and Questions?
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